On the minimal shift in the shifted Laplacian preconditioner for multigrid to work

نویسندگان

  • Pierre-Henri Cocquet
  • Martin J. Gander
چکیده

with the same efficiency, but it turned out that this is a very difficult task. Textbooks mention that there are substantial difficulties, see [3, page 72], [11, page 212], [12, page 400], and also the review [7] for why in general iterative methods have difficulties when applied to the Helmholtz equation (1). Motivated by the early proposition in [2] to use the Laplacian to precondition the Helmholtz equation, the shifted Laplacian has been advocated over the past decade as a way of making multigrid work for the indefinite Helmholtz equation, see [6, 10, 1, 5, 4] and references therein. The idea is to shift the wave number into the complex plane to obtain a good preconditioner for a Krylov method when solving (1). The hope is that due to the shift, it becomes possible to use standard multigrid to invert the preconditioner, and if the shift is not too big, it is still an effective preconditioner for the Helmholtz equation with a real wave number. This implies however two conflicting requirements: the shift should be not too large for the shifted preconditioner to be a good preconditioner, and it should be large enough for multigrid to work. It was already indicated in [7] that it is not possible to satisfy both these requirements, see also [4]. It was then rigorously proved in [9] that the preconditioner is effective, i.e. iteration numbers stay bounded independently of the wave number k if the shift is at most of the size of the wavenumber. We prove here rigorously for a one dimensional model problem that if the complex shift is less than the size of the wavenumber squared, multigrid will not work. It is therefore not pos-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shifted-Laplacian Preconditioners for Heterogeneous Helmholtz Problems

We present an iterative solution method for the discrete high wavenumber Helmholtz equation. The basic idea of the solution method, already presented in [18], is to develop a preconditioner which is based on a Helmholtz operator with a complex-valued shift, for a Krylov subspace iterative method. The preconditioner, which can be seen as a strongly damped wave equation in Fourier space, can be a...

متن کامل

A new level-dependent coarse grid correction scheme for indefinite Helmholtz problems

Pushed by the rising interest in high resolution requirements and high-dimensional applications, the diffusion term in the Laplacian equation drives the condition number of the associated discretized operator to undesirable sizes for standard iterative methods to converge rapidly. In addition, for realistic values of the wavenumber k(x) in (1), the Helmholtz operator H becomes indefinite, destr...

متن کامل

On a Multilevel Krylov Method for the Helmholtz Equation Preconditioned by Shifted Laplacian

In Erlangga and Nabben [SIAM J. Sci. Comput., 30 (2008), pp. 1572–1595], a multilevel Krylov method is proposed to solve linear systems with symmetric and nonsymmetric matrices of coefficients. This multilevel method is based on an operator which shifts some small eigenvalues to the largest eigenvalue, leading to a spectrum which is favorable for convergence acceleration of a Krylov subspace me...

متن کامل

Absolute Value Preconditioning for Symmetric Indefinite Linear Systems

We introduce a novel strategy for constructing symmetric positive definite (SPD) preconditioners for linear systems with symmetric indefinite matrices. The strategy, called absolute value preconditioning, is motivated by the observation that the preconditioned minimal residual method with the inverse of the absolute value of the matrix as a preconditioner converges to the exact solution of the ...

متن کامل

A multigrid-based shifted Laplacian preconditioner for a fourth-order Helmholtz discretization

In this paper, an iterative solution method for a fourth-order accurate discretization of the Helmholtz equation is presented. The method is a generalization of that presented in [10], where multigrid was employed as a preconditioner for a Krylov subspace iterative method. This multigrid preconditioner is based on the solution of a second Helmholtz operator with a complexvalued shift. In partic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015