Accelerating Somewhat Homomorphic Evaluation using FPGAs

نویسندگان

  • Erdinç Öztürk
  • Yarkin Doröz
  • Berk Sunar
  • Erkay Savas
چکیده

After being introduced in 2009, the first fully homomorphic encryption (FHE) scheme has created significant excitement in academia and industry. Despite rapid advances in the last 6 years, FHE schemes are still not ready for deployment due to an efficiency bottleneck. Here we introduce a custom hardware accelerator optimized for a class of reconfigurable logic to bring LTV based somewhat homomorphic encryption (SWHE) schemes one step closer to deployment in real-life applications. The accelerator we present is connected via a fast PCIe interface to a CPU platform to provide homomorphic evaluation services to any application that needs to support blinded computations. Specifically we introduce a number theoretical transform based multiplier architecture capable of efficiently handling very large polynomials. When synthesized for the Xilinx Virtex 7 family the presented architecture can compute the product of large polynomials in under 6.25 msec making it the fastest multiplier design of its kind currently available in the literature and is more than 102 times faster than a software implementation. Using this multiplier we can compute a relinearization operation in 526 msec. When used as an accelerator, for instance, to evaluate the AES block cipher, we estimate a per block homomorphic evaluation performance of 442 msec yielding performance gains of 28.5 and 17 times over similar CPU and GPU implementations, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Homomorphic Evaluation on Reconfigurable Hardware

Homomorphic encryption allows computation on encrypted data and makes it possible to securely outsource computational tasks to untrusted environments. However, all proposed schemes are quite inefficient and homomorphic evaluation of ciphertexts usually takes several seconds on high-end CPUs, even for evaluating simple functions. In this work we investigate the potential of FPGAs for speeding up...

متن کامل

A Depth Specific Description of Somewhat Homomorphic Encryption and Its Applications

In this paper, we consider the depth-specific description of somewhat homomorphic encryption(SHE) schemes over integers. The ciphertexts of SHE scheme may have various forms depending on its encryption depth, and this makes the correctness check of the encryption scheme cumbersome. However, if one can present a SHE scheme depth-specifically, the correctness check is enough with depth-wise check...

متن کامل

Accelerating LTV Based Homomorphic Encryption in Reconfigurable Hardware

After being introduced in 2009, the first fully homomorphic encryption (FHE) scheme has created significant excitement in academia and industry. Despite rapid advances in the last 6 years, FHE schemes are still not ready for deployment due to an efficiency bottleneck. Here we introduce a custom hardware accelerator optimized for a class of reconfigurable logic to bring LTV based somewhat homomo...

متن کامل

Private Database Queries Using Somewhat Homomorphic Encryption

In a private database query system, a client issues queries to a database and obtains the results without learning anything else about the database and without the server learning the query. While previous work has yielded systems that can efficiently support disjunction queries, performing conjunction queries privately remains an open problem. In this work, we show that using a polynomial enco...

متن کامل

Targeting FPGA DSP Slices for a Large Integer Multiplier for Integer Based FHE

Homomorphic encryption offers potential for secure cloud computing. However due to the complexity of homomorphic encryption schemes, performance of implemented schemes to date have been unpractical. This work investigates the use of hardware, specifically Field Programmable Gate Array (FPGA) technology, for implementing the building blocks involved in somewhat and fully homomorphic encryption s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015