HJURP involvement in de novo CenH3(CENP-A) and CENP-C recruitment.

نویسندگان

  • Hiroaki Tachiwana
  • Sebastian Müller
  • Julia Blümer
  • Kerstin Klare
  • Andrea Musacchio
  • Geneviève Almouzni
چکیده

Although our understanding of centromere maintenance, marked by the histone H3 variant CenH3(CENP-A) in most eukaryotes, has progressed, the mechanism underlying the de novo formation of centromeres remains unclear. We used a synthetic system to dissect how CenH3(CENP-A) contributes to the accumulation of CENP-C and CENP-T, two key components that are necessary for the formation of functional kinetochores. We find that de novo CENP-T accumulation depends on CENP-C and that recruitment of these factors requires two domains in CenH3(CENP-A): the HJURP-binding region (CATD) and the CENP-C-binding region (CAC). Notably, HJURP interacts directly with CENP-C and is critical for de novo accumulation of CENP-C at synthetic centromeres. On the basis of our findings, we propose that HJURP serves a dual chaperone function in coordinating CenH3(CENP-A) and CENP-C recruitment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation and DNA binding of HJURP determine its centromeric recruitment and function in CenH3(CENP-A) loading.

Centromeres, epigenetically defined by the presence of the histone H3 variant CenH3, are essential for ensuring proper chromosome segregation. In mammals, centromeric CenH3(CENP-A) deposition requires its dedicated chaperone HJURP and occurs during telophase/early G1. We find that the cell-cycle-dependent recruitment of HJURP to centromeres depends on its timely phosphorylation controlled via c...

متن کامل

HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore

Centromeres of higher eukaryotes are epigenetically marked by the centromere-specific CENP-A nucleosome. New CENP-A recruitment requires the CENP-A histone chaperone HJURP. In this paper, we show that a LacI (Lac repressor) fusion of HJURP drove the stable recruitment of CENP-A to a LacO (Lac operon) array at a noncentromeric locus. Ectopically targeted CENP-A chromatin at the LacO array was su...

متن کامل

HJURP Is a Cell-Cycle-Dependent Maintenance and Deposition Factor of CENP-A at Centromeres

The histone H3 variant CenH3, called CENP-A in humans, is central in centromeric chromatin to ensure proper chromosome segregation. In the absence of an underlying DNA sequence, it is still unclear how CENP-A deposition at centromeres is determined. Here, we purified non-nucleosomal CENP-A complexes to identify direct CENP-A partners involved in such a mechanism and identified HJURP. HJURP was ...

متن کامل

Breaking the HAC Barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly

The kinetochore is responsible for accurate chromosome segregation. However, the mechanism by which kinetochores assemble and are maintained remains unclear. Here we report that de novo CENP-A assembly and kinetochore formation on human centromeric alphoid DNA arrays is regulated by a histone H3K9 acetyl/methyl balance. Tethering of histone acetyltransferases (HATs) to alphoid DNA arrays breaks...

متن کامل

Silencing of HJURP induces dysregulation of cell cycle and ROS metabolism in bladder cancer cells via PPARγ-SIRT1 feedback loop

Holliday Junction Recognition Protein (HJURP) is a centromeric histone chaperone involving in de novo histone H3 variant CenH3 (CENP-A) recruitment. Our transcriptome and in vivo study revealed that HJURP is significantly upregulated in bladder cancer (BCa) tissues at both mRNA and protein levels. Knockdown of HJURP inhibited proliferation and viability of BCa cell lines revealed by CCK-8, colo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2015