Instabilities and patterns in coupled reaction-diffusion layers.

نویسندگان

  • Anne J Catllá
  • Amelia McNamara
  • Chad M Topaz
چکیده

We study instabilities and pattern formation in reaction-diffusion layers that are diffusively coupled. For two-layer systems of identical two-component reactions, we analyze the stability of homogeneous steady states by exploiting the block symmetric structure of the linear problem. There are eight possible primary bifurcation scenarios, including a Turing-Turing bifurcation that involves two disparate length scales whose ratio may be tuned via the interlayer coupling. For systems of n-component layers and nonidentical layers, the linear problem's block form allows approximate decomposition into lower-dimensional linear problems if the coupling is sufficiently weak. As an example, we apply these results to a two-layer Brusselator system. The competing length scales engineered within the linear problem are readily apparent in numerical simulations of the full system. Selecting a sqrt[2]:1 length-scale ratio produces an unusual steady square pattern.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of chemical patterns in coupled layers.

We investigate the interaction between reaction-diffusion systems coupled by diffusion. The photosensitive CDIMA (chorine dioxide-iodine-malonic acid) reaction allows us to study experimentally the mutual influence of two layers of Turing patterns coupled via a diffusive interaction. By illuminating each of the layers with different intensities of homogeneous external light, the chemical condit...

متن کامل

Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers.

A model reaction-diffusion system with two coupled layers yields oscillatory Turing patterns when oscillation occurs in one layer and the other supports stationary Turing structures. Patterns include "twinkling eyes," where oscillating Turing spots are arranged as a hexagonal lattice, and localized spiral or concentric waves within spot-like or stripe-like Turing structures. A new approach to g...

متن کامل

Topics in the Stability of Localized Patterns for some Reaction-Diffusion Systems

In the first part of this thesis, we study the existence and stability of multi-spot patterns on the surface of a sphere for a singularly perturbed Brusselator and Schnakenburg reaction-diffusion model. The method of matched asymptotic expansions, tailored to problems with logarithmic gauge functions, is used to construct both symmetric and asymmetric spot patterns. There are three distinct typ...

متن کامل

Turing instabilities and patterns near a Hopf bifurcation

Rui Dilão Grupo de Dinâmica Não-Linear, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Institut des Hautes Études Scientifiques, 35, route de Chartres, 91440, Bures-sur-Yvette, France. [email protected] Phone: +(351) 218417617; Fax: +(351) 218419123 Abstract We derive a necessary and sufficient condition for Turing instabilities to occur in twocomponent systems of ...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 85 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2012