Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition

نویسندگان

  • Hasim Sak
  • Andrew W. Senior
  • Françoise Beaufays
چکیده

Long Short-Term Memory (LSTM) is a recurrent neural network (RNN) architecture that has been designed to address the vanishing and exploding gradient problems of conventional RNNs. Unlike feedforward neural networks, RNNs have cyclic connections making them powerful for modeling sequences. They have been successfully used for sequence labeling and sequence prediction tasks, such as handwriting recognition, language modeling, phonetic labeling of acoustic frames. However, in contrast to the deep neural networks, the use of RNNs in speech recognition has been limited to phone recognition in small scale tasks. In this paper, we present novel LSTM based RNN architectures which make more effective use of model parameters to train acoustic models for large vocabulary speech recognition. We train and compare LSTM, RNN and DNN models at various numbers of parameters and configurations. We show that LSTM models converge quickly and give state of the art speech recognition performance for relatively small sized models. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Compact Feedforward Sequential Memory Networks for Large Vocabulary Continuous Speech Recognition

In acoustic modeling for large vocabulary continuous speech recognition, it is essential to model long term dependency within speech signals. Usually, recurrent neural network (RNN) architectures, especially the long short term memory (LSTM) models, are the most popular choice. Recently, a novel architecture, namely feedforward sequential memory networks (FSMN), provides a non-recurrent archite...

متن کامل

Recognition of spontaneous conversational speech using long short-term memory phoneme predictions

We present a novel continuous speech recognition framework designed to unite the principles of triphone and Long ShortTerm Memory (LSTM) modeling. The LSTM principle allows a recurrent neural network to store and to retrieve information over long time periods, which was shown to be well-suited for the modeling of co-articulation effects in human speech. Our system uses a bidirectional LSTM netw...

متن کامل

Long short-term memory based convolutional recurrent neural networks for large vocabulary speech recognition

Long short-term memory (LSTM) recurrent neural networks (RNNs) have been shown to give state-of-the-art performance on many speech recognition tasks, as they are able to provide the learned dynamically changing contextual window of all sequence history. On the other hand, the convolutional neural networks (CNNs) have brought significant improvements to deep feed-forward neural networks (FFNNs),...

متن کامل

Bag-of-words input for long history representation in neural network-based language models for speech recognition

In most of previous works on neural network based language models (NNLMs), the words are represented as 1-of-N encoded feature vectors. In this paper we investigate an alternative encoding of the word history, known as bag-of-words (BOW) representation of a word sequence, and use it as an additional input feature to the NNLM. Both the feedforward neural network (FFNN) and the long short-term me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1402.1128  شماره 

صفحات  -

تاریخ انتشار 2014