Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors

نویسندگان

  • Frank J. Wouda
  • Matteo Giuberti
  • Giovanni Bellusci
  • Erik Maartens
  • Jasper Reenalda
  • Bert-Jan F. van Beijnum
  • Peter H. Veltink
چکیده

Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture systems, it becomes possible to measure kinematics in any environment. However, kinetic information could not be provided with such technology. Furthermore, numerous body-worn sensors are required for a full-body motion analysis. The aim of this study is to examine the validity of a method to estimate sagittal knee joint angles and vertical ground reaction forces during running using an ambulatory minimal body-worn sensor setup. Two concatenated artificial neural networks were trained (using data from eight healthy subjects) to estimate the kinematics and kinetics of the runners. The first artificial neural network maps the information (orientation and acceleration) of three inertial sensors (placed at the lower legs and pelvis) to lower-body joint angles. The estimated joint angles in combination with measured vertical accelerations are input to a second artificial neural network that estimates vertical ground reaction forces. To validate our approach, estimated joint angles were compared to both inertial and optical references, while kinetic output was compared to measured vertical ground reaction forces from an instrumented treadmill. Performance was evaluated using two scenarios: training and evaluating on a single subject and training on multiple subjects and evaluating on a different subject. The estimated kinematics and kinetics of most subjects show excellent agreement (ρ>0.99) with the reference, for single subject training. Knee flexion/extension angles are estimated with a mean RMSE <5°. Ground reaction forces are estimated with a mean RMSE < 0.27 BW. Additionaly, peak vertical ground reaction force, loading rate and maximal knee flexion during stance were compared, however, no significant differences were found. With multiple subject training the accuracy of estimating discrete and continuous outcomes decreases, however, good agreement (ρ > 0.9) is still achieved for seven of the eight different evaluated subjects. The performance of multiple subject learning depends on the diversity in the training dataset, as differences in accuracy were found for the different evaluated subjects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo lumbo-sacral forces and moments during constant speed running at different stride lengths.

The aim of this study was to introduce a Newton-Euler inverse dynamics model that included reaction force and moment estimation at the lumbo-sacral (L5-S1) and thoraco-lumbar (T12-L1) joints. Data were collected while participants ran over ground at 3.8 m x s(-1) at three different stride lengths: preferred stride length, 20% greater than preferred, and 20% less than preferred. Inputs to the mo...

متن کامل

The Effects of Increasing Running Speed on Three-Dimensional Peak Angle of the Lower Limb Joints in Stance Phase

Objective: Attention can be paid to the biomechanical characteristics of running since the speed of running varies. The aim of the present study was to investigate the effects of increasing running speed on the three-dimensional kinematics of the lower limb’ joints in the stance phase. Methods: The research was quasi-experimental. 27 volunteer subjects ran on a treadmill and the kinematic and ...

متن کامل

Examination of Inertial Sensor-Based Estimation Methods of Lower Limb Joint Moments and Ground Reaction Force: Results for Squat and Sit-to-Stand Movements in the Sagittal Plane

Joint moment estimation by a camera-based motion measurement system and a force plate has a limitation of measurement environment and is costly. The purpose of this paper is to evaluate quantitatively inertial sensor-based joint moment estimation methods with five-link, four-link and three-link rigid body models using different trunk segmented models. Joint moments, ground reaction forces (GRF)...

متن کامل

The effect of increasing inertia upon vertical ground reaction forces and temporal kinematics during locomotion.

The addition of inertia to exercising astronauts could increase ground reaction forces and potentially provide a greater health benefit. However, conflicting results have been reported regarding the adaptations to additional mass (inertia) without additional net weight (gravitational force) during locomotion. We examined the effect of increasing inertia while maintaining net gravitational force...

متن کامل

Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture

Ground reaction forces and moments (GRF&amp;M) are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot be applied in daily life monitoring. In this study, we propose a method to predict GRF&amp;M ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018