When holography meets coherent diffraction imaging.
نویسندگان
چکیده
The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the phase problem can be solved in a fast and unambiguous manner. We demonstrate the reconstruction of various diffraction patterns of objects recorded with visible light as well as with low-energy electrons. Although we have demonstrated our HCDI method using laser light and low-energy electrons, it can also be applied to any other coherent radiation such as X-rays or high-energy electrons.
منابع مشابه
Generalised Holography Meets Coherent Diffractive Imaging
Coherent diffractive imaging (CDI) is an imaging technique that seeks to restore the exit-surface wave from intensity measurements, either in the far field diffraction plane or the Fresnel diffraction region. To date numerous strategies have been proposed to complete this restoration, the most successful being the original scheme proposed by Gerchberg and Saxton and its subsequent modifications...
متن کاملGrating-enhanced Coherent Imaging
We describe a coherent imaging technique that utilizes a diffraction grating placed near the object to alias high spatial frequency information through the imaging system pupil. The resulting optical field in the image plane is detected by means of digital holography. Multiple measurements are taken with the grating shifted by a fraction of its period between exposures. Linear signal processing...
متن کاملCoherent diffraction and holographic imaging of individual biomolecules using low-energy electrons
Modern microscopy techniques are aimed at imaging an individual molecule at atomic resolution. Here we show that low-energy electrons with kinetic energies of 50-250 eV offer a possibility of overcome the problem of radiation damage, and obtaining images of individual biomolecules. Two experimental schemes for obtaining images of individual molecules – holography and coherent diffraction imagin...
متن کاملA scheme for lensless X-ray microscopy combining coherent diffraction imaging and differential corner holography.
We successfully use the corners of a common silicon nitride supporting window in lensless X-ray microscopy as extended references in differential holography to obtain a real space hologram of the illuminated object. Moreover, we combine this method with the iterative phasing techniques of coherent diffraction imaging to enhance the spatial resolution on the reconstructed object, and overcome th...
متن کاملNanoscale imaging with resonant coherent X rays: extension of multiple-wavelength anomalous diffraction to nonperiodic structures.
The methodology of multiple-wavelength anomalous diffraction, widely used for macromolecular structure determination, is extended to the imaging of nonperiodic nanostructures. We demonstrate the solution of the phase problem by a combination of two resonantly recorded coherent scattering patterns at the carbon K edge (285 eV). Our approach merges iterative phase retrieval and x-ray holography a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 20 27 شماره
صفحات -
تاریخ انتشار 2012