Persistent random walk of cells involving anomalous effects and random death.
نویسندگان
چکیده
The purpose of this paper is to implement a random death process into a persistent random walk model which produces sub-ballistic superdiffusion (Lévy walk). We develop a stochastic two-velocity jump model of cell motility for which the switching rate depends upon the time which the cell has spent moving in one direction. It is assumed that the switching rate is a decreasing function of residence (running) time. This assumption leads to the power law for the velocity switching time distribution. This describes the anomalous persistence of cell motility: the longer the cell moves in one direction, the smaller the switching probability to another direction becomes. We derive master equations for the cell densities with the generalized switching terms involving the tempered fractional material derivatives. We show that the random death of cells has an important implication for the transport process through tempering of the superdiffusive process. In the long-time limit we write stationary master equations in terms of exponentially truncated fractional derivatives in which the rate of death plays the role of tempering of a Lévy jump distribution. We find the upper and lower bounds for the stationary profiles corresponding to the ballistic transport and diffusion with the death-rate-dependent diffusion coefficient. Monte Carlo simulations confirm these bounds.
منابع مشابه
Non-homogeneous random walks, subdiffusive migration of cells and anomalous chemotaxis
This paper is concerned with a non-homogeneous in space and non-local in time random walk model for anomalous subdiffusive transport of cells. Starting with a Markov model involving a structured probability density function, we derive the non-local in time master equation and fractional equation for the probability of cell position. We derive the fractional Fokker-Planck equation for the densit...
متن کاملA survey on random walk-based stochastic modeling in eukaryotic cell migration with emphasis on its application in cancer
Impairments in cell migration processes may cause various diseases, among which cancer cell metastasis, tumor angiogenesis, and the disability of immune cells to infiltrate into tumors are prominent ones. Mathematical modeling has been widely used to analyze the cell migration process. Cell migration is a complicated process and requires statistical methods such as random walk for proper analys...
متن کاملA survey on random walk-based stochastic modeling in eukaryotic cell migration with emphasis on its application in cancer
Impairments in cell migration processes may cause various diseases, among which cancer cell metastasis, tumor angiogenesis, and the disability of immune cells to infiltrate into tumors are prominent ones. Mathematical modeling has been widely used to analyze the cell migration process. Cell migration is a complicated process and requires statistical methods such as random walk for proper analys...
متن کاملPersistent-random-walk approach to anomalous transport of self-propelled particles.
The motion of self-propelled particles is modeled as a persistent random walk. An analytical framework is developed that allows the derivation of exact expressions for the time evolution of arbitrary moments of the persistent walk's displacement. It is shown that the interplay of step length and turning angle distributions and self-propulsion produces various signs of anomalous diffusion at sho...
متن کاملA PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 4 شماره
صفحات -
تاریخ انتشار 2015