Optic flow in human vision: MEG reveals a foveo-fugal bias in V1, specialization for spiral space in hMSTs, and global motion sensitivity in the IPS.

نویسندگان

  • Ian E Holliday
  • Timothy S Meese
چکیده

We recorded MEG responses from 17 participants viewing random-dot patterns simulating global optic flow components (expansion, contraction, rotation, deformation, and translation) and a random motion control condition. Theta-band (3-7 Hz), MEG signal power was greater for expansion than the other optic flow components in a region concentrated along the calcarine sulcus, indicating an ecologically valid, foveo-fugal bias for unidirectional motion sensors in V1. When the responses to the optic flow components were combined, a decrease in MEG beta-band (17-23 Hz) power was found in regions extending beyond the calcarine sulcus to the posterior parietal lobe (inferior to IPS), indicating the importance of structured motion in this region. However, only one cortical area, within or near the V5/hMT+ complex, responded to all three spiral-space components (expansion, contraction, and rotation) and showed no selectivity for global translation or deformation: we term this area hMSTs. This is the first demonstration of an exclusive region for spiral space in the human brain and suggests a functional role better suited to preliminary analysis of ego-motion than surface pose, which would involve deformation. We also observed that the rotation condition activated the cerebellum, suggesting its involvement in visually mediated control of postural adjustment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion mechanisms and cortical areas in human vision: psychophysics and fMRI

OUR visual world contains both luminance(first-order) and contrast-defined (secondorder) information. Distinct mechanisms underlying the perception of first-order and second-order motion have been proposed from electrophysiological, psychophysical and neurological studies. In this thesis psychophysical and human brain imaging (fMRI) experiments are described that support the notion of distinct ...

متن کامل

Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey.

Earlier studies of neurons in the anterior region of the superior temporal polysensory area (STPa) have demonstrated selectivity for visual motion using stimuli contaminated by nonmotion cues, including texture, luminance, and form. The present experiments investigated the motion selectivity of neurons in STPa in the absence of form cues using random dot optic flow displays. The responses of ne...

متن کامل

Robot Motion Vision Pait I: Theory

A direct method called fixation is introduced for solving the general motion vision problem, arbitrary motion relative to an arbitrary environment. This method results in a linear constraint equation which explicitly expresses the rotational velocity in terms of the translational velocity. The combination of this constraint equation with the Brightness-Change Constraint Equation solves the gene...

متن کامل

Robot Motion Vision Part II: Implementation

The idea of Fixation introduced a direct method for general recovery of shape and motion from images without using either feature correspondence or optical flow [1,2]. There are some parameters which have important effects on the performance of fixation method. However, the theory of fixation does not say anything about the autonomous and correct choice of those parameters. This paper presents ...

متن کامل

Sensitivity of V1 neurons to direction of spectral motion.

Motion-in-depth causes changes in the size of retinal images in addition to producing optic flow patterns. A previous psychophysical study showed that human subjects can perceive expansion motion in texture stimuli that exhibit increases in the scale of image elements but no consistent optic flow pattern. The neural mechanisms by which the scale-change information is processed remain unknown. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of vision

دوره 8 10  شماره 

صفحات  -

تاریخ انتشار 2008