Sugar uptake by cotton tissues: leaf disc versus cultured roots.
نویسنده
چکیده
The tissue accumulation of sucrose, glucose, and fructose has been studied in cultured cotton (Gossypium hirsutum L.) roots and leaf discs. Sucrose uptake by both tissues from high apoplastic concentrations was independent of pH but has a slightly acidic pH optimum from low concentrations. Like other higher plant tissues, cotton root cells accumulate sucrose via a ;saturable,' inhibitor-sensitive mechanism and a linear, inhibitor-resistant mechanism. The linear mechanism of sucrose uptake is not as pronounced in leaf disc data as it is in root data. Further, sucrose uptake by cotton leaf discs is more resistant than uptake by root cells to pH alterations, inhibitors, and monosaccharides in the uptake medium. The saturable phase of sucrose influx into cotton root is eliminated by glucose, fructose, and high pH. Sucrose influx into both tissues is not altered by osmotica up to 200 milliOsmolar. Sucrose accumulated by both tissues is rapidly converted to other chemical forms, especially in root tissue where only approximately 50% remains as neutral sugars 1 hour following the start of radiolable exposure. Although the entry of radiolabeled sucrose is faster in abraded leaf discs, they give the same response patterns to pH, inhibitors, and monosaccharide as do unabraded discs.The sucrose accumulation kinetics of cotton roots and leaf discs differ. These differences may be related to the physiological roles (source versus sink) of the two tissues in the intact plant.
منابع مشابه
Genome-wide transcriptomic comparison of cotton (Gossypium herbaceum) leaf and root under drought stress
In this study, the 454 pyrosequencing platform was used for analyzing the comparative transcriptomic profiles of leaf and root tissues of 1-month-old cotton (Gossypium herbaceum) plants under drought stress. A total of 56,354 and 49,308 reads were generated from leaf and root tissues, respectively, and clustered into 6,313 and 5,858 unigenes. The differentially expressed unigenes that showed up...
متن کاملRehydration versus Growth-induced Water Uptake in Plant Tissues.
Experiments show that the rate of water uptake by living tissues external to mature xylem of cotton stems (Gossypium hirsutum L. Auburn 7-683) is very similar to the corresponding curves for leaf tissue. In both cases one obtains a two-phase curve with phase I corresponding to passive rehydration and phase II pertaining to active growth.A theory of water movement in plant tissue first proposed ...
متن کاملCharacteristics of sugar uptake in hypocotyls of cotton.
Uptake of sucrose and hexoses by cotton (Gossypium hirsutum L.) hypocotyl segments from free space was shown to be an active, carrier-mediated process. Separate carriers existed for hexoses and sucrose. Accumulated sugars appeared in both soluble and insoluble fractions of the tissue. At optimum temperature and pH, sucrose uptake rate versus concentration was fit by a rectangular hyperbola with...
متن کاملABA Uptake in Source and Sink Tissues of Sugar Beet.
The mode of abscisic acid (ABA) uptake was studied in excised leaf and root tissue discs of sugar beet (Beta vulgaris L.). Discs were incubated in buffered medium that contained 1 mm CaCl(2) and [(14)C]ABA. The sensitivity of ABA uptake to metabolic inhibitors and temperature indicated that the ABA transport system had an energy-dependent component. Energy-dependent uptake was greater in leaf t...
متن کامل(18)O spatial patterns of vein xylem water, leaf water, and dry matter in cotton leaves.
Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the (18)O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 74 1 شماره
صفحات -
تاریخ انتشار 1984