The clastogenic response of the 1q12 heterochromatic region to DNA cross-linking agents is independent of the Fanconi anaemia pathway.
نویسندگان
چکیده
Fanconi anaemia (FA) is a rare genetic syndrome of cancer susceptibility characterized by spontaneous and induced chromosome fragility, especially after treatment with cross-linking agents. Recent investigations showed interactions between FA proteins and chromatin remodelling factors. To investigate a potential uneven distribution of the FA pathway through the human genome depending on chromatin conformation, we have analysed chromosome breakage in the largest constitutively heterochromatic region in the human genome, the 1q12 band, in lymphocytes from FA patients, carriers and healthy controls after treatment with the cross-linking agents mitomycin-C (MMC) and diepoxybutane (DEB). As expected, a higher level of MMC-induced cytotoxicity and chromosome breakage was observed in cells from FA patients when compared with normal controls and carriers. However, the increase in 1q12 breakage after increasing concentrations of MMC was of a similar magnitude in FA patients, carriers and controls. Similarly, DEB induced a high level of overall genome chromosome fragility in cells from FA patients when compared with controls with no parallel increase in chromosome breaks specifically involving the heterochromatic band 1q12. We therefore conclude that, unlike the overall genome, the sensitivity of chromosome 1 constitutive heterochromatin to the chromosome breaking activity of cross-linking agents is independent of a functional FA pathway, indicating that the action of the FA pathway is unevenly distributed through the human genome.
منابع مشابه
Sister chromatid exchange evaluation as an aid to the diagnosis and exclusion of Fanconi's anaemia by induced chromosome damage analysis.
Evaluation of chromatid aberrations induced in culture by DNA cross linking agents provides the most reliable method currently available for the diagnosis and exclusion of Fanconi's anaemia. However, at appropriate concentrations of clastogenic agent the aberration frequency in an unaffected subject may be very low and thus it may be difficult to confirm that the treatment was effective. Data a...
متن کاملProteasome function is required for DNA damage response and fanconi anemia pathway activation.
Proteasome inhibitors sensitize tumor cells to DNA-damaging agents, including ionizing radiation (IR), and DNA cross-linking agents (melphalan and cisplatin) through unknown mechanisms. The Fanconi anemia pathway is a DNA damage-activated signaling pathway, which regulates cellular resistance to DNA cross-linking agents. Monoubiquitination and nuclear foci formation of FANCD2 are critical steps...
متن کاملDNA Damage and Cellular Stress Responses Inhibition of the Nedd8 System Sensitizes Cells to DNA Interstrand Cross-linking Agents
The Fanconi anemia pathway is required for repair of DNA interstrand cross-links (ICL). Fanconi anemia pathway–deficient cells are hypersensitive to DNA ICL–inducing drugs such as cisplatin. Conversely, hyperactivation of the Fanconi anemia pathway is a mechanism that may underlie cellular resistance to DNA ICL agents. Modulating FANCD2 monoubiquitination, a key step in the Fanconi anemia pathw...
متن کاملInhibition of the Nedd8 system sensitizes cells to DNA interstrand cross-linking agents.
The Fanconi anemia pathway is required for repair of DNA interstrand cross-links (ICL). Fanconi anemia pathway-deficient cells are hypersensitive to DNA ICL-inducing drugs such as cisplatin. Conversely, hyperactivation of the Fanconi anemia pathway is a mechanism that may underlie cellular resistance to DNA ICL agents. Modulating FANCD2 monoubiquitination, a key step in the Fanconi anemia pathw...
متن کاملInherent radiosensitivity and its impact on breast cancer chemo-radiotherapy
About 10% of apparently normal individuals are sensitive to clastogenic effects of physico-chemical agents. More than 45% of breast cancer patients’ exhibit elevated radiosensitivity. Although the nature of inherent radiosensitivity is not fully understood, but insufficiency and impaired DNA repair mechanism might be prime cause of radiosensitivity. This is evident from genetically affect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 23 8 شماره
صفحات -
تاریخ انتشار 2002