ar X iv : 0 80 2 . 25 70 v 1 [ m at h . D G ] 1 9 Fe b 20 08 CANONICAL MEASURES AND KÄHLER - RICCI FLOW
نویسندگان
چکیده
We show that the Kähler-Ricci flow on an algebraic manifold of positive Kodaira dimension and semi-ample canonical line bundle converges to a unique canonical metric on its canonical model. It is also shown that there exists a canonical measure of analytic Zariski decomposition on an algebraic manifold of positive Kodaira dimension. Such a canonical measure is unique and invariant under birational transformations under the assumption of the finite generation of canonical rings.
منابع مشابه
Canonical measures and the dynamical system of Bergman kernels
In this article, we construct the canonical semipositive current or the canonical measure (= the potential of the canonical semipositive current) on a smooth projective variety of nonnegative Kodaira dimension in terms of a dynamical system of Bergman kernels. This current is considered to be a generalization of a Kähler-Einstein metric and coincides the one considered independently by J. Song ...
متن کاملCanonical measures and dynamical systems of Bergman kernels
In this article, we construct the canonical semipositive current or the canonical measure (= the potential of the canonical semipositive current) on a smooth projective variety with nonnegative Kodaira dimension in terms of a dynamical system of Bergman kernels. This current is considered to be a generalization of a Kähler-Einstein metric and coincides the one considered independently by J. Son...
متن کاملCanonical Measures and Kähler-ricci Flow
We show that the Kähler-Ricci flow on an algebraic manifold of positive Kodaira dimension and semi-ample canonical line bundle converges to a unique canonical metric on its canonical model. It is also shown that there exists a canonical measure of analytic Zariski decomposition on an algebraic manifold of positive Kodaira dimension. Such a canonical measure is unique and invariant under biratio...
متن کاملADIABATIC LIMITS OF RICCI - FLAT KÄHLER METRICS 3 from
We study adiabatic limits of Ricci-flat Kähler metrics on a Calabi-Yau manifold which is the total space of a holomorphic fibration when the volume of the fibers goes to zero. By establishing some new a priori estimates for the relevant complex Monge-Ampère equation, we show that the Ricci-flat metrics collapse (away from the singular fibers) to a metric on the base of the fibration. This metri...
متن کامل1 0 Ju n 20 16 REMARKS ON CURVATURE IN THE TRANSPORTATION METRIC
According to a classical result of E. Calabi any hyperbolic affine hypersphere endowed with its natural Hessian metric has a non-positive Ricci tensor. The affine hyperspheres can be described as the level sets of solutions to the “hyperbolic” toric Kähler-Einstein equation e = detDΦ on proper convex cones. We prove a generalization of this theorem showing that for every Φ solving this equation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008