Genetic Algorithm Based Template Optimization for a Vision System: Obstacle Detection

نویسندگان

  • Umair Ali Khan
  • Alireza Fasih
  • Kyandoghere Kyamakya
  • Jean Chamberlain Chedjou
چکیده

A simulator is developed for training and optimizing the templates for cellular neural networks for obstacle detection. The simulator uses the Genetic Algorithm (GA) for training the cellular neural network. The traditional method of genetic algorithm involves creating an initial population of random solutions (chromosomes) in binary format, the so called chromosomes encoding. But this approach of genetic algorithm defines the chromosomes in the form of real numbers, thus eliminating the need of encoding and decoding of the chromosomes. The results differ, by no means, with those of the traditional methods. The method was used for obstacle detection for autonomous vehicles giving two stereo images of a sequence as inputs. The output results for various different image processing tasks are also presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic tuning of a behavior-based guidance algorithm for formation flight of quadrotors

This paper presents a tuned behavior-based guidance algorithm for formation flight of quadrotors. The behavior-based approach provides the basis for the simultaneous realization of different behaviors such as leader following and obstacle avoidance for a group of agents; in our case they are quadcopters. In this paper optimization techniques are utilized to tune the parameters of a behavior-bas...

متن کامل

A Specific Encoding Scheme for Genetic Stereo Correspondence Searching: Application to Obstacle Detection

Stereo correspondence is one of the most active research areas in computer vision. It consists in identifying features in two or more stereo images that are generated by the same physical feature in the three-dimensional space. In our approach, the matching problem is first turned into an optimization task where a fitness function, representing the constraints on the solution, is to be minimize...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Parameters Identification of an Experimental Vision-based Target Tracker Robot Using Genetic Algorithm

In this paper, the uncertain dynamic parameters of an experimental target tracker robot are identified through the application of genetic algorithm. The considered serial robot is a two-degree-of-freedom dynamic system with two revolute joints in which damping coefficients and inertia terms are uncertain. First, dynamic equations governing the robot system are extracted and then, simulated nume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009