Amphetamine- and methamphetamine-induced hyperthermia: Implications of the effects produced in brain vasculature and peripheral organs to forebrain neurotoxicity

نویسندگان

  • John F Bowyer
  • Joseph P Hanig
چکیده

The adverse effects of amphetamine- (AMPH) and methamphetamine- (METH) induced hyperthermia on vasculature, peripheral organs and peripheral immune system are discussed. Hyperthermia alone does not produce amphetamine-like neurotoxicity but AMPH and METH exposures that do not produce hyperthermia (≥40°C) are minimally neurotoxic. Hyperthermia likely enhances AMPH and METH neurotoxicity directly through disruption of protein function, ion channels and enhanced ROS production. Forebrain neurotoxicity can also be indirectly influenced through the effects of AMPH- and METH- induced hyperthermia on vasculature. The hyperthermia and the hypertension produced by high doses amphetamines are a primary cause of transient breakdowns in the blood-brain barrier (BBB) resulting in concomitant regional neurodegeneration and neuroinflammation in laboratory animals. This BBB breakdown can occur in the amygdala, thalamus, striatum, sensory and motor cortex and hippocampus. Under these conditions, repetitive seizures greatly enhance neurodegeneration in hippocampus, thalamus and amygdala. Even when the BBB is less disrupted, AMPH- or METH- induced hyperthermia effects on brain vasculature may play a role in neurotoxicity. In this case, striatal and cortical vascular function are adversely affected, and even greater ROS, immune and damage responses are seen in the meninges and cortical surface vasculature. Finally, muscle and liver damage and elevated cytokines in blood can result when amphetamines produce hyperthermia. Proteins, from damaged muscle may activate the peripheral immune system and exacerbate liver damage. Liver damage can further increase cytokine levels, immune system activation and increase ammonia levels. These effects could potentially enhance vascular damage and neurotoxicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3,4-Methylenedioxymethamphetamine produces glycogenolysis and increases the extracellular concentration of glucose in the rat brain.

Oxidative and/or bioenergetic stress is thought to contribute to the mechanism of neurotoxicity of amphetamine derivatives, e.g., 3,4-methylenedioxymethamphetamine (MDMA). In the present study, the effect of MDMA on brain energy regulation was investigated by examining the effect of MDMA on brain glycogen and glucose. A single injection of MDMA (10-40 mg/kg, s.c.) produced a dose-dependent decr...

متن کامل

An evaluation of l-ephedrine neurotoxicity with respect to hyperthermia and caudate/putamen microdialysate levels of ephedrine, dopamine, serotonin, and glutamate.

l-Ephedrine is an active ingredient in several herbal formulations with a mechanism of action similar to amphetamine and methamphetamine. However, its potential to damage dopaminergic terminals in the caudate/putamen (CPu) has yet to be fully evaluated. The studies here used in vivo brain microdialysis experiments to determine the systemic doses and extracellular brain levels of l-ephedrine nec...

متن کامل

Evidence for the involvement of nitric oxide in 3,4-methylenedioxymethamphetamine-induced serotonin depletion in the rat brain.

Production of reactive oxygen and/or nitrogen species has been thought to contribute to the long-term depletion of brain dopamine and serotonin (5-HT) produced by amphetamine derivatives, i.e., methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). In the present study, the effects of nitric-oxide synthase (NOS) inhibitors were examined on the long-term depletion of striatal dopamine and...

متن کامل

The effect of low dose amphetamine in rotenone-induced toxicity in a mice model of Parkinson’s disease

Objective(s): The effects of low dose amphetamine on oxidative stress and rotenone-induced neurotoxicity and liver injury were examined in vivo in a mice model of Parkinson’s disease. Materials and Methods: Male mice were treated with rotenone (1.5 mg/kg, every other day for two weeks, subcutaneously). Mice received either the vehicle or...

متن کامل

Alterations in vesicular dopamine uptake contribute to tolerance to the neurotoxic effects of methamphetamine.

Previous studies demonstrated that tolerance to the long-term neurotoxic effects of methamphetamine on dopamine neurons could be induced by pretreating with multiple injections of escalating doses of methamphetamine. The mechanism(s) underlying this tolerance phenomenon is unknown. Some recent studies suggested that aberrant vesicular monoamine transporter-2 (VMAT-2) and dopamine transporter fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014