Prediction of future observations using belief functions: A likelihood-based approach

نویسندگان

  • Orakanya Kanjanatarakul
  • Thierry Denoeux
  • Songsak Sriboonchitta
چکیده

We study a new approach to statistical prediction in the DempsterShafer framework. Given a parametric model, the random variable to be predicted is expressed as a function of the parameter and a pivotal random variable. A consonant belief function in the parameter space is constructed from the likelihood function, and combined with the pivotal distribution to yield a predictive belief function that quantifies the uncertainty about the future data. The method boils down to Bayesian prediction when a probabilistic prior is available. The asymptotic consistency of the method is established in the iid case, under some assumptions. The predictive belief function can be approximated to any desired accuracy using Monte Carlo simulation and nonlinear optimization. As an illustration, the method is applied to multiple linear regression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Future record values prediction in exponential distribution

According to the first nth observations of the upper record from exponential distribution, in this article, we can compute maximum likelihood estimation of this distribution parameter. We, then, concentrate on point prediction of the future upper record values in exponential distribution based both on classic and Bayes approaches and second degree and linex loss functions.We, ultimately, de...

متن کامل

Joint prediction of observations and states in time-series: a partially supervised prognostics approach based on belief functions and KNN

Forecasting the future states of a complex system is a complicated challenge that is encountered in many industrial applications covered in the community of Prognostics and Health Management (PHM). Practically, states can be either continuous or discrete: Continuous states generally represent the value of a signal while discrete states generally depict functioning modes reflecting the current d...

متن کامل

AN OPTIMUM APPROACH TOWARDS SEISMIC FRAGILITY FUNCTION OF STRUCTURES THROUGH METAHEURISTIC HARMONY SEARCH ALGORITHM

Vulnerability assessment of structures encounter many uncertainties like seismic excitations intensity and response of structures. The most common approach adopted to deal with these uncertainties is vulnerability assessment through fragility functions. Fragility functions exhibit the probability of exceeding a state namely performance-level as a function of seismic intensity. A common approach...

متن کامل

Joint prediction of observations and states in time-series based on belief functions

Forecasting the future states of a complex system is a complicated challenge that is encountered in many industrial applications covered in the community of Prognostics and Health Management (PHM). Practically, states can be either continuous or discrete: Continuous states generally represent the value of a signal while discrete states generally depict functioning modes reflecting the current d...

متن کامل

Bayesian Prediction Intervals under Bivariate Truncated Generalized Cauchy Distribution

Ateya and Madhagi (2011) introduced a multivariate form of truncated generalized Cauchy distribution (TGCD), which introduced by Ateya and Al-Hussaini (2007). The multivariate version of (TGCD) is denoted by (MVTGCD). Among the features of this form are that subvectors and conditional subvectors of random vectors, distributed according to this distribution, have the same form of distribution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2016