Nanoampere pumping of Cooper pairs
نویسندگان
چکیده
All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
منابع مشابه
High-accuracy current generation in the nanoampere regime from a silicon single-trap electron pump
A gigahertz single-electron (SE) pump with a semiconductor charge island is promising for a future quantum current standard. However, high-accuracy current in the nanoampere regime is still difficult to achieve because the performance of SE pumps tends to degrade significantly at frequencies exceeding 1 GHz. Here, we demonstrate robust SE pumping via a single-trap level in silicon up to 7.4 GHz...
متن کاملEvidence of Cooper pair pumping with combined flux and voltage control
We have experimentally demonstrated pumping of Cooper pairs in a single-island mesoscopic structure. The island was connected to leads through SQUID (Superconducting Quantum Interference Device) loops. Synchronized flux and voltage signals were applied whereby the Josephson energies of the SQUIDs and the gate charge were tuned adiabatically. From the current-voltage characteristics one can see ...
متن کاملAdiabatic transport of Cooper pairs in arrays of Josephson junctions
We have developed a quantitative theory of Cooper pair pumping in gated one-dimensional arrays of Josephson junctions. The pumping accuracy is limited by quantum tunneling of Cooper pairs out of the propagating potential well and by direct supercurrent flow through the array. Both corrections decrease exponentially with the number N of junctions in the array, but give a serious limitation of ac...
متن کاملTracking Cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission.
In high-temperature superconductivity, the process that leads to the formation of Cooper pairs, the fundamental charge carriers in any superconductor, remains mysterious. We used a femtosecond laser pump pulse to perturb superconducting Bi(2)Sr(2)CaCu(2)O(8+δ) and studied subsequent dynamics using time- and angle-resolved photoemission and infrared reflectivity probes. Gap and quasiparticle pop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007