Innate Immune Recognition and Inflammasome Activation in Listeria Monocytogenes Infection
نویسندگان
چکیده
Listeria monocytogenes is an intracellular, Gram-positive bacterium that can cause life-threatening illness especially in immunocompromised individuals and newborns. The pathogen propagates within the cytosol of various host cells after escaping from the phagosomal compartment depending on the cytolysin listeriolysin O. While L. monocytogenes can manipulate the endocytic and many host-cell signaling cascades to its advantage, host cells are however capable of detecting Listeria infection at different cellular compartments by expressing innate immune receptors that trigger antibacterial defense pathways. These receptors include the Toll-like receptors, NOD-like receptors (NLRs), and cytosolic DNA sensors. Some NLRs as well as the DNA sensor AIM2 form multiprotein complexes called inflammasomes. Inflammasomes regulate caspase-1-dependent production of the key inflammatory cytokines IL-1β and IL-18 as well as pyroptotic cell death in L. monocytogenes-infected cells. This review describes the current knowledge about innate immune sensing and inflammasome activation in Listeria infection.
منابع مشابه
TLR2 Signaling Contributes to Rapid Inflammasome Activation during F. novicida Infection
BACKGROUND Early detection of microorganisms by the innate immune system is provided by surface-expressed and endosomal pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). Detection of microbial components by TLRs initiates a signaling cascade leading to the expression of proinflammatory cytokines including IL-6 and IL-1β. Some intracellular bacteria subvert the TLR respons...
متن کاملRIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids.
Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill-defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria t...
متن کاملListeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome.
The inflammasome pathway functions to regulate caspase-1 activation in response to a broad range of stimuli. Caspase-1 activation is required for the maturation of the pivotal pro-inflammatory cytokines of the pro-IL-1beta family. In addition, caspase-1 activation leads to a certain type of cell death known as pyroptosis. Activation of the inflammasome has been shown to play a critical role in ...
متن کاملType I interferon signaling is required for activation of the inflammasome during Francisella infection
Francisella tularensis is a pathogenic bacterium whose virulence is linked to its ability to replicate within the host cell cytosol. Entry into the macrophage cytosol activates a host-protective multimolecular complex called the inflammasome to release the proinflammatory cytokines interleukin (IL)-1beta and -18 and trigger caspase-1-dependent cell death. In this study, we show that cytosolic F...
متن کاملLipoproteins of Listeria monocytogenes are critical for virulence and TLR2-mediated immune activation.
Numerous cell surface components of Listeria influence and regulate innate immune recognition and virulence. Here, we demonstrate that lipidation of prelipoproteins in Listeria monocytogenes is required to promote NF-kappaB activation via TLR2. In HeLa cells transiently expressing TLR2, L. monocytogenes and Listeria innocua mutants lacking the prolipoprotein diacylglyceryl transferase (lgt) gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2010