Human Activity Recognition and Prediction
نویسندگان
چکیده
Human activity recognition (HAR) has become one of the most active research topics in image processing and pattern recognition [1]. Detecting specific activities in a live feed or searching in video archives still relies almost completely on human resources. Detecting multiple activities in real-time video feeds is currently performed by assigning multiple analysts to simultaneously watch the same video stream. Manual analysis of video is labor intensive, fatiguing, and error prone. Solving the problem of recognizing human activities from video can lead to improvements in several applications fields like in surveillance systems, human computer interfaces, sports video analysis, digital shopping assistants, video retrieval, gaming and health-care [30, 25, 12, 15].
منابع مشابه
A New Ontology-Based Approach for Human Activity Recognition from GPS Data
Mobile technologies have deployed a variety of Internet–based services via location based services. The adoption of these services by users has led to mammoth amounts of trajectory data. To use these services effectively, analysis of these kinds of data across different application domains is required in order to identify the activities that users might need to do in different places. Researche...
متن کاملپیشبینی قابلیت فهم همخوانها در افراد دارای شنوایی عادی با استفاده از مدلهای میکروسکوپی دارای معیار فاصله مختلف در بازشناساگر خودکار گفتار
In this study, recognition rates of consonants available in vowel-consonant-vowel structure in hearing tests and two microscopic models will be investigated. Such a syllable structure doesn’t exist in Farsi and Azerbaijani languages, but since the goal is only recognition of middle phoneme, according to hearing tests, listeners are able to properly recognize phonemes in clean speech conditions....
متن کاملActivity Prediction using a Space-Time CNN and Bayesian Framework
We present a technique to address the new challenge of activity prediction in computer vision field. In activity prediction, we infer the next human activity through “classified activities” and “activity data analysis. Moreover, the prediction should be processed in real-time to avoid dangerous or anomalous activities. The combination of space–time convolutional neural networks (ST-CNN) and imp...
متن کاملZIAEEFARD, BERGEVIN, MORENCY: TIME-SLICE PREDICTION OF DYADIC ACTIVITIES 1 Time-slice Prediction of Dyadic Human Activities
Recognizing human activities from video data is being leveraged for surveillance and human-computer interaction applications. In this paper, we introduce the problem of time-slice activity recognition which aims to explore human activity at a smaller temporal granularity. Time-slice recognition is able to infer human behaviors from a short temporal window. It has been shown that the temporal sl...
متن کاملWritten word recognition by the elementary and advanced level Persian-English bilinguals
According to a basic prediction made by the Revised Hierarchical Model (RHM), at early stages of language acquisition, strong L2-L1 lexical links are formed. RHM predicts that these links weaken with increasing proficiency, although they do not disappear even at higher levels of language development. To test this prediction, two groups of highly proficie...
متن کاملSeismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task
In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015