High glucose decreases collagenase expression and increases TIMP expression in cultured human peritoneal mesothelial cells.
نویسندگان
چکیده
BACKGROUND Peritoneal fibrosis (PF), a serious problem in long-term continuous ambulatory peritoneal dialysis (CAPD) patients, is characterized by extracellular matrix (ECM) accumulation which results from an imbalance between the synthesis and the degradation of ECM components. Previous studies have demonstrated that ECM synthesis is increased in human peritoneal mesothelial cells (HPMCs) under high glucose conditions, but the effects of high glucose on degradative pathways have not been fully explored. This study was undertaken to elucidate the effects of high glucose on these proteolytic processes in cultured HMPCs. METHODS HPMCs were isolated from human omentum and were exposed to 5.6 mM glucose (NG), 5.6 mM glucose +34.4 mM mannitol (NG + M), or 40 mM glucose (HG) with or without PKC inhibitor (PKCi). Real-time PCR and western blot were performed to determine collagenases (MMP-1, -8 and -13) and TIMPs (TIMP-1 and -2) mRNA and protein expression, respectively. The individual activities of collagenases in culture media were determined by ELISA. RESULTS Types I and III collagen protein expression were significantly increased in HG-conditioned media compared to NG media (P < 0.05). The MMP-1, -8 and -13/GAPDH mRNA ratios were significantly lower in HPMCs exposed to HG medium compared to NG cells by 64, 52 and 37%, respectively, and their protein expression by 76, 42 and 49%, respectively, in HG- vs NG-conditioned media. The activities of collagenases in HG-conditioned media were also significantly lower than those in NG media (P < 0.05). In contrast, HG significantly increased TIMPs mRNA ratios and protein expression in HPMCs. These changes in collagenase and TIMP expression induced by HG were abrogated upon pre-treatment with PKCi. CONCLUSION In conclusion, impaired matrix degradation may contribute to ECM accumulation in PF.
منابع مشابه
Metalloproteinases and tissue inhibitor of metalloproteinases in mesothelial cells. Cellular differentiation influences expression.
Mesothelial cells play a critical role in the remodeling process that follows serosal injury. Although mesothelial cells are known to synthesize a variety of extracellular matrix components including types I, III, and IV collagens, their potential to participate in matrix degradation has not been explored. We now report that human pleural and peritoneal mesothelial cells express interstitial co...
متن کاملمقایسه سلولهای مزانشیمی مغز استخوان و سلولهای مزوتلیومی مایع سروزی ازنظر میزان بیان مولکولهای کمپلکس سازگاری نسجی اصلی (MHC)
Abstract Background: Mesothelium is composed of a single layer of mesothelial cells attached to a thin basement membrane supported by subserosal connective tissue it plays an important role in homeostasis, wound healing, fluid transport and inflammation. The introduction of peritoneal dialysis (PD) as a modality of renal replacement therapy has provoked much interest in the biology of perito...
متن کاملGlucose and prednisolone alter basic fibroblast growth factor expression in peritoneal mesothelial cells and fibroblasts.
The mechanism of peritoneal fibrosis in patients on continuous ambulatory peritoneal dialysis is poorly understood. The production of basic fibroblast growth factor (bFGF) by human peritoneal mesothelial cells cultured in high glucose medium was investigated, and the behavior of peritoneal fibroblasts, as well as the inhibitory effect of prednisolone, was assessed. Reverse transcriptase-PCR and...
متن کاملReduction of perlecan synthesis and induction of TGF-beta1 in human peritoneal mesothelial cells due to high dialysate glucose concentration: implication in peritoneal dialysis.
Prolonged exposure of the peritoneal mesothelium to high dialysate glucose concentrations reduces anionic sites that are critical to its selective permeability, thereby impairing the peritoneal transport properties in patients on long-term peritoneal dialysis (PD). Perlecan, an anionic heparan sulfate proteoglycan, is pivotal to the selective permeability of basement membranes, and high glucose...
متن کاملRecombinant GPI-Anchored TIMP-1 Stimulates Growth and Migration of Peritoneal Mesothelial Cells
BACKGROUND Mesothelial cells are critical in the pathogenesis of post-surgical intraabdominal adhesions as well as in the deterioration of the peritoneal membrane associated with long-term peritoneal dialysis. Mesothelial denudation is a pathophysiolocigally important finding in these processes. Matrix metalloproteinase (MMP) biology underlies aspects of mesothelial homeostasis as well as wound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2008