Contextually Learnt Detection of Unusual Motion-Based Behaviour in Crowded Public Spaces

نویسنده

  • Ognjen Arandjelovic
چکیده

In this paper we are interested in analyzing behaviour in crowded public places at the level of holistic motion. Our aim is to learn, without user input, strong scene priors or labelled data, the scope of “normal behaviour” for a particular scene and thus alert to novelty in unseen footage. The first contribution is a low-level motion model based on what we term tracklet primitives, which are scene-specific elementary motions. We propose a clustering-based algorithm for tracklet estimation from local approximations to tracks of appearance features. This is followed by two methods for motion novelty inference from tracklet primitives: (a) we describe an approach based on a non-hierarchial ensemble of Markov chains as a means of capturing behavioural characteristics at different scales, and (b) a more flexible alternative which exhibits a higher generalizing power by accounting for constraints introduced by intentionality and goal-oriented planning of human motion in a particular scene. Evaluated on a 2h long video of a busy city marketplace, both algorithms are shown to be successful at inferring unusual behaviour, the latter model achieving better performance for novelties at a larger spatial scale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Context-Aware Trajectory Prediction

Human motion and behaviour in crowded spaces is influenced by several factors, such as the dynamics of other moving agents in the scene, as well as the static elements that might be perceived as points of attraction or obstacles. In this work, we present a new model for human trajectory prediction which is able to take advantage of both humanhuman and human-space interactions. The future trajec...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Image Processing System for Pedestrian Monitoring using neural classification of normal motion patterns

Automated surveillance of crowded dynamic scenes requires prompt detection and classification of unusual activities as means of alerting operators to potentially dangerous situations as they arise. Motion is a strong cue that can be used to classify dynamic scenes and hence detect abnormal movements that can be related to critical situations. Here we propose a method to detect such unusual move...

متن کامل

High Dense Crowd Pattern and Anomaly Detection Using Statistical Model

Human crowd behavior analysis is a subject of great interest in research now days. Great advantage of investigating dense human crowds in places like mosques and temples to perform automatic surveillance for any unusual activity detection that might be a subject of interest and must be addressed on earliest to avoid accident. We present robust statistical skeleton for modeling a dense crowded s...

متن کامل

Spatio-Temporal Motion Pattern Modeling of Extremely Crowded Scenes

The abundance of video surveillance systems has created a dire need for computational methods that can assist or even replace human operators. Research in this field, however, has yet to tackle an important real-world scenario: extremely crowded scenes. The excessive amount of people and their activities in extremely crowded scenes present unique challenges to motion-based video analysis. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011