Mechanisms of deep brain stimulation: an intracellular study in rat thalamus.
نویسندگان
چکیده
High-frequency deep brain stimulation (DBS) in the thalamus alleviates most kinds of tremor, yet its mechanism of action is unknown. Studies in subthalamic nucleus and other brain sites have emphasized non-synaptic factors. To explore the mechanism underlying thalamic DBS, we simulated DBS in vitro by applying high-frequency (125 Hz) electrical stimulation directly into the sensorimotor thalamus of adult rat brain slices. Intracellular recordings revealed two distinct types of membrane responses, both of which were initiated with a depolarization and rapid spike firing. However, type 1 responses repolarized quickly and returned to quiescent baseline during simulated DBS whereas type 2 responses maintained the level of membrane depolarization, with or without spike firing. Individual thalamic neurones exhibited either type 1 or type 2 response but not both. In all neurones tested, simulated DBS-evoked membrane depolarization was reversibly eliminated by tetrodotoxin, glutamate receptor antagonists, and the Ca(2+) channel antagonist Cd(2+). Simulated DBS also increased the excitability of thalamic cells in the presence of glutamate receptor blockade, although this non-synaptic effect induced no spontaneous firing such as that found in subthalamic nucleus neurones. Our data suggest that high-frequency stimulation when applied in the ventral thalamus can rapidly disrupt local synaptic function and neuronal firing thereby leading to a 'functional deafferentation' and/or 'functional inactivation'. These mechanisms, driven primarily by synaptic activation, help to explain the paradox that lesions, muscimol and DBS in thalamus all effectively stop tremor.
منابع مشابه
Control of epileptic seizures by electrical low frequency deep brain stimulation: A review of probable mechanisms
Epilepsy is the most common neurological disease with no definitive method in treatment. Notably, the main way to treat and control epileptic seizures is drug therapy. However, about 20-30% of patients with epilepsy are drug resistant and require other therapeutic manners. Deep brain stimulation is a new therapeutic strategy for these patients. Conspicuously, there are no clear answers for basi...
متن کاملNeuronal response to local electrical stimulation in rat thalamus: physiological implications for mechanisms of deep brain stimulation.
High-frequency deep brain stimulation (DBS) of sensorimotor thalamus containing "tremor cells" leads to tremor arrest in humans with parkinsonian and essential tremor. To examine the possible underlying mechanism(s), we recorded in vitro intracellular responses of rat thalamic neurons to local intrathalamic stimulation. Such simulated DBS (sDBS) induced a sustained membrane depolarization accom...
متن کاملTreatment of Neurological and Psychiatric Disorders with Deep Brain Stimulation Raising Hopes and Future Challenges
The technology of Neural Stimulation in recent years has become the focus of the research and treatment, although it has been around for many years. The potential use of stimulating the brain and nerves ranges from the spinal cord stimulation to the implantations of cochlear and bionic eyes with a large discrepancy between the clinical readiness for these various uses. Electrical high-frequency...
متن کاملO10: Deep Brain Stimulation and Psychiatry
The use of deep brain stimulation in psychiatric disorders has received great interest owing to the small risk of the operation, the reversible nature of the technique, and the possibility of optimizing treatment postoperatively. Currently deep brain stimulation in psychiatry is investigated for obsessive-compulsive disorder, Gilles de la Tourette’s syndrome and major depression. This presentat...
متن کاملDeep brain stimulation in a rat model of post-traumatic stress disorder modifies forebrain neuronal activity and serum corticosterone
Objective(s): Post-traumatic stress disorder (PTSD), one of the most devastating kinds of anxiety disorders, is the consequence of a traumatic event followed by intense fear. In rats with contextual fear conditioning (CFC), a model of PTSD caused by CFC (electrical foot shock chamber), deep brain stimulation (DBS) alleviates CFC abnormalities.Materials and Methods: Forty Male Wistar rats (220–2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of physiology
دوره 559 Pt 1 شماره
صفحات -
تاریخ انتشار 2004