Evolutionary Stability of Pure-Strategy Equilibria in Finite Games

نویسندگان

  • E. Somanathan
  • E. SOMANATHAN
چکیده

Sufficient conditions for pure-strategy Nash equilibria of finite games to be Ž . Lyapunov stable under a large class of evolutionary dynamics, the regular monotonic selection dynamics, are discussed. In particular, it is shown that in almost all finite extensive-form games, all the pure-strategy equilibria are stable. In such games, all mixed-strategy equilibria close to pure-strategy equilibria are also stable. Journal of Economic Literature Classification Numbers: C70, C72. Q 1997

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instability of Mixed Nash Equilibria in Generalised Hawk-Dove Game: A Project Conflict Management Scenario

This paper generalises the Hawk-Dove evolutionary game by introducing cost sharing ratios for both players, and applies the generalised Hawk-Dove model to conflict management in projects through investigating the stability of Nash equilibria. A model with clashing interests between a project owner and a contractor is considered to derive their strategy adaptation given the cost sharing ratios. ...

متن کامل

Pure strategy equilibria in symmetric two-player zero-sum games

We show that a symmetric two-player zero-sum game has a pure strategy equilibrium if and only if it is not a generalized rock-paper-scissors matrix. Moreover, we show that every finite symmetric quasiconcave two-player zero-sum game has a pure equilibrium. Further sufficient conditions for existence are provided. We point out that the class of symmetric two-player zero-sum games coincides with ...

متن کامل

Mean-Potential Law in Evolutionary Games.

The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state ...

متن کامل

Computing pure Bayesian-Nash equilibria in games with finite actions and continuous types

We extend the well-known fictitious play (FP) algorithm to compute pure-strategy Bayesian-Nash equilibria in private-value games of incomplete information with finite actions and con-tinuous types (G-FACTs). We prove that, if the frequency distribution of actions (fictitiousplay beliefs) converges, then there exists a pure-strategy equilibrium strategy that is con-sistent with i...

متن کامل

An Evolutionary Interpretation of Mixed-strategy Equilibria*

One of the more convincing interpretations of mixed strategy equilibria describes a mixed equilibrium as a steady state in a large population in which all players use pure strategies but the population as a whole mimics a mixed strategy. To be complete, however, this interpretation requires a good story about how the population arrives at the appropriate distribution over pure strategies. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996