Quantification of cellulase activity using the quartz crystal microbalance technique.
نویسندگان
چکیده
The development of more efficient utilization of biomass has received increased attention in recent years. Cellulases play an important role in processing biomass through advanced biotechnological approaches. Both the development and the application of cellulases require an understanding of the activities of these enzymes. A new method to determine the activity of cellulase has been developed using a quartz crystal microbalance (QCM) technique. We compare the results from this technique with those from the IUPAC (International Union of Pure and Applied Chemistry) dinitrosalicylic acid (DNS) standard method and also from biccinchoninic acid and ion chromatography methods. It is shown that the QCM technique provides results closer to those obtained by measuring the actual reducing sugars. The elimination of the use of color development in the standard redox methods makes the QCM platform easier to implement; it also allows more flexibility in terms of the nature of the substrate. Finally, validation of the proposed method was carried out by relating the crystallinity of different substrates to the cellulase activity. Numerical values of cellulase activities measured with the QCM method showed that celluloses with higher crystallinity indices were hydrolyzed slower and to a lower extent than those of lower crystallinity indices for the cellulase mixtures examined.
منابع مشابه
In situ monitoring of cellulase activity by microgravimetry with a quartz crystal microbalance.
Quartz crystal microgravimetry (QCM) was used to investigate the interactions between cellulase enzymes and model cellulose substrates. The substrates consisted of thin films of cellulose that were spin-coated onto polyvinylamine (PVAm) precoated quartz crystal sensors carrying conductive gold surfaces. In QCM the quartz crystals are piezoelectrically driven and the frequency and dissipation sh...
متن کاملCellulase Activity on Thin Films of Cellulose by QCM and SPR
We monitored the enzymatic hydrolysis on thin films of cellulose, in situ and real time by using a piezoelectric sensing device (Quartz Crystal Microbalance, QCM) and Surface Plasmon Resonance (SPR). Cellulose thin films were deposited on piezoelectric resonators using spin coating technique. Films of different crystallinity were also prepared by using self assembly of cellulose-thiol derivativ...
متن کاملContribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose
BACKGROUND Enzymatic removal of hemicellulose components such as xylan is an important factor for maintaining high glucose conversion from lignocelluloses subjected to low-severity pretreatment. Supplementation of xylanase in the cellulase mixture enhances glucose release from pretreated lignocellulose. Filamentous fungi produce multiple xylanases in their cellulase system, and some of them hav...
متن کاملQuantification of Cigarette Smoke Particle Deposition In Vitro Using a Triplicate Quartz Crystal Microbalance Exposure Chamber
There are a variety of smoke exposure systems available to the tobacco industry and respiratory toxicology research groups, each with their own way of diluting/delivering smoke to cell cultures. Thus a simple technique to measure dose in vitro needs to be utilised. Dosimetry-assessment of dose-is a key element in linking the biological effects of smoke generated by various exposure systems. Mic...
متن کاملEnzymatic kinetics of cellulose hydrolysis: a QCM-D study.
The interactions between films of cellulose and cellulase enzymes were monitored using a quartz crystal microbalance (QCM). Real-time measurements of the coupled contributions of enzyme binding and hydrolytic reactions were fitted to a kinetic model that described closely significant cellulase activities. The proposed model combines simple Boltzmann sigmoidal and 1 - exp expressions. The obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 81 5 شماره
صفحات -
تاریخ انتشار 2009