Double Layer Based Multi-label Classifier Chain

نویسندگان

  • Tao Guo
  • Guiyang Li
چکیده

In multi-label learning, each training example is associated with a set of labels and the task is to predict the proper label set for each unseen instance. The widely known binary relevance method (BR) for multi-label classification considers each label as an independent binary problem. It is ignored in the literature due to inadequacy of not considering label correlations. In this paper, we present our double layer based classifier chains method (DCC), which overcomes disadvantages of BR and inherits the benefit of classifier chain method (CC). This algorithm decomposes the multi-label classification problem into two classification processes to generate classifier chain. Each classifier in the chain is responsible for learning and predicting the binary association of the label given the attribute space expanded by all prior binary relevance predictions in the chain. This chaining allows DCC to take into account correlations in the label space. We also extend this approach further in an ensemble framework. An extensive evaluation covers a broad range of multi-label datasets with a variety of evaluation measures specifically designed for multi-label classification. Experiments on benchmark datasets validate the effectiveness of proposed approach comparing with state-of-art methods in terms of average ranking.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

On the Optimality of Classifier Chain for Multi-label Classification

To capture the interdependencies between labels in multi-label classification problems, classifier chain (CC) tries to take the multiple labels of each instance into account under a deterministic high-order Markov Chain model. Since its performance is sensitive to the choice of label order, the key issue is how to determine the optimal label order for CC. In this work, we first generalize the C...

متن کامل

Dynamic classifier chains for multi-label learning

In this paper, we deal with the task of building a dynamic ensemble of chain classifiers for multi-label classification. To do so, we proposed two concepts of classifier chains algorithms that are able to change label order of the chain without rebuilding the entire model. Such modes allows anticipating the instance-specific chain order without a significant increase in computational burden. Th...

متن کامل

Condition Assessment of Metal Oxide Surge Arrester Based on Multi-Layer SVM Classifier

This paper introduces the indicators for surge arrester condition assessment based on the leakage current analysis. Maximum amplitude of fundamental harmonic of the resistive leakage current, maximum amplitude of third harmonic of the resistive leakage current and maximum amplitude of fundamental harmonic of the capacitive leakage current were used as indicators for surge arrester condition mon...

متن کامل

Multi - label classification with Bayesian network - based chain classifiers q

In multi-label classification the goal is to assign an instance to a set of different classes. This task is normally addressed either by defining a compound class variable with all the possible combinations of labels (label power-set methods) or by building independent classifiers for each class (binary relevance methods). The first approach suffers from high computationally complexity, while t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015