Carbon nanotubes in a photonic metamaterial.
نویسندگان
چکیده
Hybridization of single-walled carbon nanotubes with plasmonic metamaterials leads to photonic media with an exceptionally strong ultrafast nonlinearity. This behavior is underpinned by strong coupling of the nanotube excitonic response to the weakly radiating Fano-type resonant plasmonic modes that can be tailored by metamaterial design.
منابع مشابه
A Systematic Approach to Photonic Crystal Based Metamaterial Design
Photonic crystal design procedure for negative refraction has so far been based on trial and error. In this paper, for the first time, a novel and systematic design procedure based on physical and mathematical properties of photonic crystals is proposed to design crystal equi-frequency contours (EFCs) to produce negative refraction. The EFC design is performed by the help of rectangular stair-c...
متن کاملTHz bandwidth optical switching with carbon nanotube metamaterial.
We provide the first demonstration of exceptional light-with-light optical switching performance of a carbon nanotube metamaterial - a hybrid nanostructure of a plasmonic metamaterial with semiconducting single-walled carbon nanotubes. A modulation depth of 10% in the near-IR with sub-500 fs response time is achieved with a pump fluence of just 10 μJ/cm², which is an order of magnitude lower th...
متن کاملMultiwall carbon nanotube microcavity arrays
Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes Appl. Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays Appl. Free-standing porous silicon single and multiple optical cavities Periodic highly dense multi-wall carbon nanotube (MWCNT) arrays can act as photonic materials exhibit...
متن کاملTheoretical Calculations of the Effect of Finite Length on the Structural Properties of Pristine and Nitrogen-doped Carbon Nanotubes
The effect of impurities on quantum chemical parameters of single-walled nanotubes (SWNTs) was studied using density functional theory (DFT). The density of states (DOS), Fermi energy and thermodynamic energies of (5,5) carbon nanotubes were calculated in the presence of nitrogen impurity. It was found that this nanotube remains metallic after being doped with one nitrogen atom. The partial den...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 104 15 شماره
صفحات -
تاریخ انتشار 2010