Faster Individual Discrete Logarithms with the Qpa and Nfs Variants
نویسنده
چکیده
Computing discrete logarithms in finite fields is a main concern in cryptography. The best algorithms known are the Number Field Sieve and its variants (special, high-degree, tower) in large and medium characteristic fields (e.g. GF(p2), GF(p12)); the Function Field Sieve and the Quasi Polynomialtime Algorithm in small characteristic finite fields (e.g. GF(36·509)). The last step of this family of algorithms is the individual logarithm computation. It computes a smooth decomposition of a given target in two phases: an initial splitting, then a descent tree. While new improvements have been made to reduce the complexity of the dominating relation collection and linear algebra steps, resulting in a smaller factor basis (database of known logarithms of small elements), the last step remains of same difficulty. Indeed, we have to find a smooth decomposition of a typically large element in the finite field. This work improves the initial splitting phase and applies to any non-prime finite field. It is very efficient when the extension degree is composite. It exploits the proper subfields, resulting in a much more smooth decomposition of the target. This leads to a new trade-off between the initial splitting step and the descent step with QPA. Moreover it reduces the width and the height of the subsequent descent tree.
منابع مشابه
The Tower Number Field Sieve
The security of pairing-based crypto-systems relies on the difficulty to compute discrete logarithms in finite fields Fpn where n is a small integer larger than 1. The state-of-art algorithm is the number field sieve (NFS) together with its many variants. When p has a special form (SNFS), as in many pairings constructions, NFS has a faster variant due to Joux and Pierrot. We present a new NFS v...
متن کاملComputing Individual Discrete Logarithms Faster in GF(p^n)
The Number Field Sieve (NFS) algorithm is the best known method to compute discrete logarithms (DL) in large characteristic finite fields Fpn , with p large and n ≥ 1 small. This algorithm comprises four steps: polynomial selection, relation collection, linear algebra and finally, individual logarithm computation. The first step outputs two numbers fields equipped with a map to Fpn . After the ...
متن کاملFaster individual discrete logarithms in non-prime finite fields with the NFS and FFS algorithms
Computing discrete logarithms in finite fields is a main concern in cryptography. The best algorithms known are the Number Field Sieve and its variants in large and medium characteristic fields (e.g. GF(p), GF(p)); the Function Field Sieve and the Quasi Polynomial-time Algorithm in small characteristic finite fields (e.g. GF(36·509)). The last step of the NFS and FFS algorithms is the individua...
متن کاملComputing Individual Discrete Logarithms Faster in GF(p n ) with the NFS-DL Algorithm
The Number Field Sieve (NFS) algorithm is the best known method to compute discrete logarithms (DL) in finite fields Fpn , with p medium to large and n ≥ 1 small. This algorithm comprises four steps: polynomial selection, relation collection, linear algebra and finally, individual logarithm computation. The first step outputs two polynomials defining two number fields, and a map from the polyno...
متن کاملAlgorithmes pour la factorisation d'entiers et le calcul de logarithme discret. (Algorithms for integer factorization and discrete logarithms computation)
In this thesis, we study the problems of integer factorization and discrete logarithm com-putation in finite fields. First, we study the ECM algorithm for integer factorization and presenta method to analyze the elliptic curves used in this algorithm by studying the Galois propertiesof division polynomials.Then, we present in detail the NFS algorithm for integer factorization an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017