Experimental study of super paramagnetic iron oxide labeled synovial mesenchymal stem cells.
نویسندگان
چکیده
To investigate the feasibility and changes of biological characteristics before and after synovial mesenchymal stem cells (SMSCs) labelled by super paramagnetic iron oxide (SPIO). The rabbit SMSCs were isolated, cultured, purified and identified in vitro. After adding the different concentrations of SPIO-labelled liquid, the cells were incubated 24 h in 37°C carbon dioxide incubator. The labeled-cell samples were observed by Prussian blue staining, transmission electron microscope (TEM) and the cell biology before and after the labeling was compared. The blue stained particles could be seen in the cytoplasm; the SPIO label was positive in 95% SMSC cells. With the concentration of the label liquid increasing, the blue-stained cytoplasm became darker. A large number of high electron density particles could be seen in the cytoplasm and in the pinocytosis vesicles by TEM, which suggested SPIO label positive. When the SPIO concentration was (12.5~50) μg/mL, the differences in cell proliferation and cell viability between the SMSCs after labelling and the SMSCs before labelling were not significant; when the concentration was over 100 μg/mL, the cell proliferation and cell viability were inhibited. A certain concentration range of SPIO can safely label the rabbit SMSC according to this study, which is important for solving the problem of tracing SMSCs in the joints.
منابع مشابه
P65: Treatment of Spinal Cord Injury Using Transplantation of Adipose Mesenchymal Stem Cells Transfected with Poly-L-Lysine/ DNA (GDNF) - Super Paramagnetic Iron Oxide Nanoparticles
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملNoninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI
Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...
متن کاملIn-Vivo Positive Contrast Tracking of Bone Marrow Stem Cells Labeled with IODEX-TAT-FITC Nanoparticles
Introduction Bone marrow-derived mesenchymal stem cells (BMSCs) possess tremendous therapeutic potential because of their capacity to differentiate into multiple functional lineages. To assess the efficacy of BMSCs cell therapy, MRI methods are being developed to monitor their bio-distribution in longitudinal studies. Although, labeling BMSCs with iron-oxide nanoparticles can facilitate their i...
متن کاملIn vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection
Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...
متن کاملEvaluation of umbilical cord mesenchymal stem cell labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-lysine.
OBJECTIVE The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. METHODS The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of clinical and experimental medicine
دوره 8 11 شماره
صفحات -
تاریخ انتشار 2015