Trainable COSFIRE filters for vessel delineation with application to retinal images

نویسندگان

  • George Azzopardi
  • Nicola Strisciuglio
  • Mario Vento
  • Nicolai Petkov
چکیده

Retinal imaging provides a non-invasive opportunity for the diagnosis of several medical pathologies. The automatic segmentation of the vessel tree is an important pre-processing step which facilitates subsequent automatic processes that contribute to such diagnosis. We introduce a novel method for the automatic segmentation of vessel trees in retinal fundus images. We propose a filter that selectively responds to vessels and that we call B-COSFIRE with B standing for bar which is an abstraction for a vessel. It is based on the existing COSFIRE (Combination Of Shifted Filter Responses) approach. A B-COSFIRE filter achieves orientation selectivity by computing the weighted geometric mean of the output of a pool of Difference-of-Gaussians filters, whose supports are aligned in a collinear manner. It achieves rotation invariance efficiently by simple shifting operations. The proposed filter is versatile as its selectivity is determined from any given vessel-like prototype pattern in an automatic configuration process. We configure two B-COSFIRE filters, namely symmetric and asymmetric, that are selective for bars and bar-endings, respectively. We achieve vessel segmentation by summing up the responses of the two rotation-invariant B-COSFIRE filters followed by thresholding. The results that we achieve on three publicly available data sets (DRIVE: Se=0.7655, Sp=0.9704; STARE: Se=0.7716, Sp=0.9701; CHASE_DB1: Se=0.7585, Sp=0.9587) are higher than many of the state-of-the-art methods. The proposed segmentation approach is also very efficient with a time complexity that is significantly lower than existing methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters

Background: The vascular tree observed in a retinal fundus image can provide clues for cardiovascular diseases. Its analysis requires the identification of vessel bifurcations and crossovers. Methods: We use a set of trainable keypoint detectors that we call Combination Of Shifted FIlter REsponses or COSFIRE filters to automatically detect vascular bifurcations in segmented retinal images. We c...

متن کامل

Multiscale Blood Vessel Delineation Using B-COSFIRE Filters

We propose a delineation algorithm that deals with bar-like structures of different thickness. Detection of linear structures is applicable to several fields ranging from medical images for segmentation of vessels to aerial images for delineation of roads or rivers. The proposed method is suited for any delineation problem and employs a set of BCOSFIRE filters selective for lines and line-endin...

متن کامل

Detection of Retinal Vascular Bifurcations by Rotation- and Scale-Invariant COSFIRE Filters

The analysis of the vascular tree in retinal fundus images is important for identifying risks of various cardiovascular diseases. We propose trainable COSFIRE (Combination Of Shifted FIlter REsponses) filters to detect vascular bifurcations. A COSFIRE filter is automatically configured to be selective for a bifurcation that is specified by a user from a training image. The configuration selects...

متن کامل

Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters

In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...

متن کامل

Detection of Curved Lines with B-COSFIRE Filters: A Case Study on Crack Delineation

The detection of curvilinear structures is an important step for various computer vision applications, ranging from medical image analysis for segmentation of blood vessels, to remote sensing for the identification of roads and rivers, and to biometrics and robotics, among others. This is a nontrivial task especially for the detection of thin or incomplete curvilinear structures surrounded with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image analysis

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2015