Asymmetric Synthesis of Second-Generation Light-Driven Molecular Motors
نویسندگان
چکیده
The enantiomeric homogeneity of light-driven molecular motors based on overcrowded alkenes is crucial in their application as either unidirectional rotors or as chiral multistate switches. It was challenging to obtain these compounds as single enantiomers via the established synthetic procedures due to loss of optical purity in the key step, i.e., the Barton-Kellogg olefination reaction. Searching for strategies to avoid racemization, a new class of light-driven molecular motors was designed, synthesized, and studied. The stereochemical integrity was fully preserved throughout the synthesis, and on the basis of photochemical and kinetic studies using UV/vis, CD, and 1H NMR spectroscopy, it was established that they still function properly as unidirectional molecular motors.
منابع مشابه
An enantioselective synthetic route toward second-generation light-driven rotary molecular motors.
Controlling the unidirectional rotary process of second-generation molecular motors demands access to these motors in their enantiomerically pure form. In this paper, we describe an enantioselective route to three new second-generation light-driven molecular motors. Their synthesis starts with the preparation of an optically active alpha-methoxy-substituted upper-half ketone involving an enzyma...
متن کاملThird-Generation Light-Driven Symmetric Molecular Motors
Symmetric molecular motors based on two overcrowded alkenes with a notable absence of a stereogenic center show potential to function as novel mechanical systems in the development of more advanced nanomachines offering controlled motion over surfaces. Elucidation of the key parameters and limitations of these third-generation motors is essential for the design of optimized molecular machines b...
متن کاملControlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification.
Substitution of a 6-membered by a 5-membered ring upper half in the light driven second generation molecular motors resulted in a dramatic increase of the speed of rotation.
متن کاملFine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors.
The introduction of bulky substituents at the stereogenic center of light-driven second-generation molecular motors results in an acceleration of the speed of rotation. This is due to a more strained structure with elongated C=C bonds and a higher energy level of the ground state relative to the transition state for the rate-limiting thermal isomerization step. Understanding the profound influe...
متن کاملA redesign of light-driven rotary molecular motors.
Structural modification of unidirectional light-driven rotary molecular motors in which the naphthalene moieties are exchanged for substituted phenyl moieties are reported. This redesign provides an additional tool to control the speed of the motors, and should enable the design and synthesis of more complex systems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 82 شماره
صفحات -
تاریخ انتشار 2017