Practical application of penalty-free evolutionary multi-objective optimisation of water distribution systems
نویسندگان
چکیده
Evolutionary algorithms are a commonly applied optimisation approach in water distribution systems. However, the algorithms are time consuming when applied to large optimisation problems. The aim of this paper is to evaluate the application of a penalty-free multi-objective evolutionary optimisation algorithm to solve a real-world network design problem. The optimization model uses pressure-dependent analysis that accounts for the pressure dependency of the nodal flows and thus avoids the need for penalties to address violations of the nodal pressure constraints. The algorithm has been tested previously using benchmark optimisation problems in the literature. In all cases, the algorithm found improved solutions and/or the best solution reported previously in the literature with considerably fewer function evaluations. In this paper, a real-world network with over 250 pipes was considered. The network comprises multiple sources, multiple demand categories, many fire flows and involves extended period simulation. Due to the size and complexity of the optimization problem, a high performance computer that comprises multiple cores was used for the computational solution. Multiple optimisation runs were performed concurrently. Overall, the algorithm performs well; it consistently provides least cost solutions that satisfy the system requirements quickly. The least-cost design obtained was over 40% cheaper than the existing network in terms of the pipe costs.
منابع مشابه
Particle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملThe COMOGA Method: Constrained Optimisation by Multi-Objective Genetic Algorithms
This paper describes a novel method for attacking constrained optimisation problems with evolutionary algorithms, and demonstrates its effectiveness over a range of problems. COMOGA (Constrained Optimisation by MultiObjective Genetic Algorithms) combines two evolutionary techniques for multiobjective optimisation with a simple regulatory mechanism to produce a constrained optimisation method. I...
متن کاملA Multi-objective Approach to Constrained Optimisation of Gas Supply Networks: the COMOGA Method
This paper presents a new technique for handling constraints within evolutionary algorithms, and demonstrates its effectiveness on a real-world, constrained optimisation problem that arises in the design of gas-supply networks. The technique, which we call the COMOGA method (Constrained Optimisation by Multi-Objective Genetic Algorithms), borrows two crucial ideas from multiobjective optimisati...
متن کاملA MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS
This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...
متن کاملCombined Economic and Emission Dispatch Solution Using Exchange Market Algorithm
This paper proposes the exchange market algorithm (EMA) to solve the combined economic and emission dispatch (CEED) problems in thermal power plants. The EMA is a new, robust and efficient algorithm to exploit the global optimum point in optimization problems. Existence of two seeking operators in EMA provides a high ability in exploiting global optimum point. In order to show the capabilities ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016