Policy Search for Motor Primitives

نویسندگان

  • Jens Kober
  • Jan Peters
چکیده

Many motor skills in humanoid robotics can be learned using parametrized motor primitives from demonstrations. However, most interesting motor learning problems require self-improvement often beyond the reach of current reinforcement learning methods due to the high dimensionality of the state-space. We develop an EM-inspired algorithm applicable to complex motor learning tasks. We compare this algorithm to several well-known parametrized policy search methods and show that it outperforms them. We apply it to motor learning problems and show that it can learn the complex Ball-in-a-Cup task using a real Barrett WAMTM robot arm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lightweight 4x4 MDS Matrices for Hardware-Oriented Cryptographic Primitives

Linear diffusion layer is an important part of lightweight block ciphers and hash functions. This paper presents an efficient class of lightweight 4x4 MDS matrices such that the implementation cost of them and their corresponding inverses are equal. The main target of the paper is hardware oriented cryptographic primitives and the implementation cost is measured in terms of the required number ...

متن کامل

Learning Motor Skills: From Algorithms to Robot Experiments

Ever since the word “robot” was introduced to the English language by Karel Čapek’s play “Rossum’s Universal Robots” in 1921, robots have been expected to become part of our daily lives. In recent years, robots such as autonomous vacuum cleaners, lawn mowers, and window cleaners, as well as a huge number of toys have been made commercially available. However, a lot of additional research is req...

متن کامل

Learning motor skills: from algorithms to robot experiments (Lernen motorischer Fähigkeiten)

Ever since the word “robot” was introduced to the English language by Karel Čapek’s play “Rossum’s Universal Robots” in 1921, robots have been expected to become part of our daily lives. In recent years, robots such as autonomous vacuum cleaners, lawn mowers, and window cleaners, as well as a huge number of toys have been made commercially available. However, a lot of additional research is req...

متن کامل

Reinforcement learning of motor skills with policy gradients

Autonomous learning is one of the hallmarks of human and animal behavior, and understanding the principles of learning will be crucial in order to achieve true autonomy in advanced machines like humanoid robots. In this paper, we examine learning of complex motor skills with human-like limbs. While supervised learning can offer useful tools for bootstrapping behavior, e.g., by learning from dem...

متن کامل

Generating State Lattice Motion Primitives for Differentially Constrained Motion Planning

We propose a method of generating motion primitives for motion planning under differential constraints. These primitives lend themselves particularly well to off-line precomputation. In this manner, they are attractive due to their capacity to capture the mobility constraints of the robot and to establish a state sampling policy that is conducive to efficient search. The first objective allows ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • KI

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2009