Microfluidic continuous particle/cell separation via electroosmotic-flow-tuned hydrodynamic spreading
نویسندگان
چکیده
Among the microfluidic separation methods, hydrodynamic spreading is a simple and high-throughput continuous separation technique based on the difference in size. However, it is difficult to adjust tiny pressure differences accurately in microfluidic devices. In this study, a combination of electroosmotic flow (EOF) and hydrodynamic flow spreading was employed to tune the size separation of particles. A stream with different kinds of particle suspensions was driven co-fluently with a particle-free carrier stream under both mechanical external and electroosmotic pressure in a microchannel. The EOF-tuned hydrodynamic spreading behaviour was investigated experimentally and modelled through an electric equivalent model and numerical simulation. When the magnitudes of the mechanically and electroosmotically induced pressures were similar, the EOF tuning on the pressure-driven flow became significant. Hence, the hydrodynamic spreading could be easily adjusted by a tuned power supply. The separation was studied in more detail with 1.9 and 9.9 μm fluorescent polystyrene particles. Moreover, separation of E. coli and yeast cells was accomplished. In conclusion, this technique has the advantages of good stability of mechanical-pressure-driven flow and precise tuning of the EOF, and provides a robust method for size-based separation of particles and cells. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip.
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) ...
متن کاملMicrofluidic Device for Continuous Particle Separation Using Hydrodynamic Filtration
A size-dependent particle separation (classification) is one of the most important procedures in biochemical, environmental, or medical analyses and their applications. However, the smaller particle size or the smaller size difference makes the particle classification difficult. The Lab-on-a-Chip concept have encouraged the miniaturization of various separation or selection methods for small pa...
متن کاملMicrofluidic Hydrodynamic Cell Separation: A Review
Microfluidic continuous cell separation based on hydrodynamic interaction in a microfluidic channel has attracted attention because of its robustness, high throughput and cell viability. This paper systematically gives an overview on recent advances in hydrodynamic particle and cell separation in microfluidic devices. It presents the basic ideas and fluid mechanics for the hydrodynamic interact...
متن کاملSlanted, asymmetric microfluidic lattices as size-selective sieves for continuous particle/cell sorting.
Hydrodynamic microfluidic platforms have been proven to be useful and versatile for precisely sorting particles/cells based on their physicochemical properties. In this study, we demonstrate that a simple lattice-shaped microfluidic pattern can work as a virtual sieve for size-dependent continuous particle sorting. The lattice is composed of two types of microchannels ("main channels" and "sepa...
متن کاملSimultaneous separation and detection of cations and anions on a microfluidic device with suppressed electroosmotic flow and a single injection point.
A rapid and simultaneous separation of cationic and anionic peptides and proteins in a glass microfluidic device that has been covalently modified with a neutral poly(ethylene glycol) (PEG) coating to minimize protein adsorption is presented. The features of the device allow samples that contain both anions and cations to be introduced from a central flow stream and separated in different chann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007