Homer 1 mediates store- and inositol 1,4,5-trisphosphate receptor-dependent translocation and retrieval of TRPC3 to the plasma membrane.
نویسندگان
چکیده
Store-operated Ca(2+) channels (SOCs) mediate receptor-stimulated Ca(2+) influx. Accumulating evidence indicates that members of the transient receptor potential (TRP) channel family are components of SOCs in mammalian cells. Agonist stimulation activates SOCs and TRP channels directly and by inducing translocation of channels in intracellular vesicles to the plasma membrane (PM). The mechanism of TRP channel translocation in response to store depletion and agonist stimulation is not known. Here we use TRPC3 as a model to show that IP(3) and the scaffold Homer 1 (H1) regulate the rate of translocation and retrieval of TRPC3 from the PM. In resting cells, TRPC3 exists in TRPC3-H1b/c-IP(3)Rs complexes that are located in part at the PM and in part in intracellular vesicles. Binding of IP(3) to the IP(3)Rs dissociates the interaction between IP(3)Rs and H1 but not between H1 and TRPC3 to form IP(3)Rs-TRPC3-H1b/c. TIRFM and biotinylation assays show robust receptor- and store-dependent translocation of the TRPC3 to the PM and their retrieval upon termination of cell stimulation. The translocation requires depletion of stored Ca(2+) and is prevented by inhibition of the IP(3)Rs. In HEK293, dissociating the H1b/c-IP(3)R complex with H1a results in TRPC3 translocation to the PM, where it is spontaneously active. The TRPC3-H1b/c-IP(3)Rs complex is reconstituted by infusing H1c into these cells. Reconstitution is inhibited by IP(3). Deletion of H1 in mice markedly reduces the rates of translocation and retrieval of TRPC3. Conversely, infusion of H1c into H1(-/-) cells eliminates spontaneous channel activity and increases the rate of channel activation by agonist stimulation. The effects of H1c are inhibited by IP(3). These findings together with our earlier studies demonstrating gating of TRPC3 by IP(3)Rs were used to develop a model in which assembly of the TRPC3-H1b/c-IP(3)Rs complexes by H1b/c mediates both the translocation of TRPC3-containing vesicles to the PM and gating of TRPC3 by IP(3)Rs.
منابع مشابه
Suppression of TRPC3 leads to disappearance of store-operated channels and formation of a new type of store-independent channels in A431 cells.
In most non-excitable cells, calcium (Ca(2+)) release from the inositol 1,4,5-trisphosphate (InsP(3))-sensitive intracellular Ca(2+) stores is coupled to Ca(2+) influx through the plasma membrane Ca(2+) channels whose molecular composition is poorly understood. Several members of mammalian TRP-related protein family have been implicated to both receptor- and store-operated Ca(2+) influx. Here w...
متن کاملA calmodulin/inositol 1,4,5-trisphosphate (IP3) receptor-binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor-independent process.
Conformational coupling with the inositol 1,4,5-trisphosphate (IP3) receptor has been suggested as a possible mechanism of activation of TRPC3 channels and a region in the C terminus of TRPC3 has been shown to interact with the IP3 receptor as well as calmodulin (calmodulin/IP3 receptor-binding (CIRB) region). Here we show that internal deletion of 20 amino acids corresponding to the highly con...
متن کاملAgonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions.
Junctate is a 33 kDa integral protein of sarco(endo)plasmic reticulum membranes that forms a macromolecular complex with inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptors and TRPC3 channels. TIRF microscopy shows that junctate enhances the number of fluorescent puncta on the plasma membrane. The size and distribution of these puncta are not affected by the addition of agonists that mobili...
متن کاملMutant IP3 receptors attenuate store-operated Ca2+ entry by destabilizing STIM–Orai interactions in Drosophila neurons
Store-operated Ca2+ entry (SOCE) occurs when loss of Ca2+ from the endoplasmic reticulum (ER) stimulates the Ca2+ sensor, STIM, to cluster and activate the plasma membrane Ca2+ channel Orai (encoded by Olf186-F in flies). Inositol 1,4,5-trisphosphate receptors (IP3Rs, which are encoded by a single gene in flies) are assumed to regulate SOCE solely by mediating ER Ca2+ release. We show that in D...
متن کاملAn elevation in physical coupling of type 1 inositol 1,4,5-trisphosphate (IP3) receptors to transient receptor potential 3 (TRPC3) channels constricts mesenteric arteries in genetic hypertension.
Hypertension is associated with an elevation in agonist-induced vasoconstriction, but mechanisms involved require further investigation. Many vasoconstrictors bind to phospholipase C-coupled receptors, leading to an elevation in inositol 1,4,5-trisphosphate (IP(3)) that activates sarcoplasmic reticulum IP(3) receptors. In cerebral artery myocytes, IP(3) receptors release sarcoplasmic reticulum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 281 43 شماره
صفحات -
تاریخ انتشار 2006