Subplate Neurons: Crucial Regulators of Cortical Development and Plasticity

نویسنده

  • Patrick O. Kanold
چکیده

The developing cerebral cortex contains a distinct class of cells, subplate neurons, which form one of the first functional cortical circuits. Subplate neurons reside in the cortical white matter, receive thalamic inputs and project into the developing cortical plate, mostly to layer 4. Subplate neurons are present at key time points during development. Removal of subplate neurons profoundly affects cortical development. Subplate removal in visual cortex prevents the maturation of thalamocortical synapse, the maturation of inhibition in layer 4, the development of orientation selective responses in individual cortical neurons, and the formation of ocular dominance columns. In addition, monocular deprivation during development reveals that ocular dominance plasticity is paradoxical in the absence of subplate neurons. Because subplate neurons projecting to layer 4 are glutamatergic, these diverse deficits following subplate removal were hypothesized to be due to lack of feed-forward thalamic driven cortical excitation. A computational model of the developing thalamocortical pathway incorporating feed-forward excitatory subplate projections replicates both normal development and plasticity of ocular dominance as well as the effects of subplate removal. Therefore, we postulate that feed-forward excitatory projections from subplate neurons into the developing cortical plate enhance correlated activity between thalamus and layer 4 and, in concert with Hebbian learning rules in layer 4, allow maturational and plastic processes in layer 4 to commence. Thus subplate neurons are a crucial regulator of cortical development and plasticity, and damage to these neurons might play a role in the pathology of many neurodevelopmental disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The subplate and early cortical circuits.

The developing mammalian cerebral cortex contains a distinct class of cells, subplate neurons (SPns), that play an important role during early development. SPns are the first neurons to be generated in the cerebral cortex, they reside in the cortical white matter, and they are the first to mature physiologically. SPns receive thalamic and neuromodulatory inputs and project into the developing c...

متن کامل

Subplate Neurons Regulate Maturation of Cortical Inhibition and Outcome of Ocular Dominance Plasticity

Synaptic plasticity during critical periods of development requires intact inhibitory circuitry. We report that subplate neurons are needed both for maturation of inhibition and for the proper sign of ocular dominance (OD) plasticity. Removal of subplate neurons prevents the developmental upregulation of genes involved in mature, fast GABAergic transmission in cortical layer 4, including GABA r...

متن کامل

Subplate neurons: a missing link among neurotrophins, activity, and ocular dominance plasticity?

T subplate is a transient structure comprised of a subset of the earliest neurons produced in the cerebral cortex (1). Although it has now been almost 30 years since the subplate was first described (2), a definitive function for the subplate remains unproven. In general, the subplate is believed to be important for the formation of connections between thalamus and cortex. Subplate neurons have...

متن کامل

Establishment of patterned thalamocortical connections does not require nitric oxide synthase.

Subplate neurons are early-generated neurons that project into the overlying neocortex and are required for the formation of ocular dominance columns. A subset of subplate neurons express nitric oxide synthase (NOS) and produce nitric oxide (NO), a neuronal messenger thought to be involved in adult hippocampal synaptic plasticity and also in the establishment of certain specific connections dur...

متن کامل

Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex.

Among the first postmitotic cells of the cerebral cortex is a special population located below the cortical plate: the subplate neurons. These neurons reach a high degree of morphological maturity during fetal life, well before the neurons of the cortical layers have matured, yet nearly all of these cells die after birth in the cat. Subplate neurons are also known to receive synaptic contacts. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009