Relativistic MHD Simulation of a Tilted Black - Hole Accretion Disk
نویسندگان
چکیده
This paper presents a continuation of our efforts to numerically study accretion disks that are misaligned (tilted) with respect to the rotation axis of a Kerr black hole. Here we present results of a global numerical simulation which fully incorporates the effects of the black hole spacetime as well as magnetorotational turbulence that is the primary source of angular momentum transport in the flow. This simulation shows dramatic differences from comparable simulations of untilted disks. Accretion onto the hole occurs predominantly through two opposing plunging streams that start from high latitudes with respect to both the black-hole and disk midplanes. This is due to the aspherical nature of the gravitational spacetime around the rotating black hole. These plunging streams start from a larger radius than would be expected for an untilted disk. In this regard the tilted black hole effectively acts like an untilted black hole of lesser spin. Throughout the duration of the simulation, the main body of the disk remains tilted with respect to the symmetry plane of the black hole; thus there is no indication of a Bardeen-Petterson effect in the disk at large. The torque of the black hole instead principally causes a global precession of the main disk body. In this simulation the precession has a frequency of 3(M⊙/M) Hz, a value consistent with many observed low-frequency quasi-periodic oscillations. However, this value is strongly dependent on the size of the disk, so this frequency may be expected to vary over a large range. Subject headings: accretion, accretion disks — black hole physics — galaxies: active — MHD — relativity — X-rays: stars
منابع مشابه
Application of the Cubed-sphere Grid to Tilted Black-hole Accretion Disks
In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing “plunging streams” and global precession of the disk powered...
متن کاملGeneral Relativistic Simulations of Jet Formation in a Rapidly Rotating Black Hole Magnetosphere
To investigate the formation mechanism of relativistic jets in active galactic nuclei and micro-quasars, we have developed a new general relativistic magnetohydrodynamic code in Kerr geometry. Here we report on the first numerical simulation of jet formation in a rapidly-rotating (a = 0.95) Kerr black hole magnetosphere. We study cases in which the Keplerian accretion disk is both co-rotating a...
متن کاملTilted Thick-disk Accretion onto a Kerr Black Hole
We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M = +0.9 (prog...
متن کاملGeneral Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk
We have performed several simulations of black hole systems (non-rotating, black hole spin parameter a = 0.0 and rapidly rotating, a = 0.95) with a geometrically thin Keplerian disk using the newly developed RAISHIN code. The simulation results show the formation of jets driven by the Lorentz force and the gas pressure gradient. The jets have mildly relativistic speed (& 0.4 c). The matter is c...
متن کاملEpicyclic Motions and Standing Shocks in Numerically Simulated Tilted Black-hole Accretion Disks
This work presents a detailed analysis of the overall flow structure and unique features of the inner region of the tilted disk simulations described in Fragile et al. (2007). The primary new feature identified in the main disk body is a latitude-dependent radial epicyclic motion driven by pressure gradients attributable to the gravitomagnetic warping of the disk. The induced motion of the gas ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008