Comparison of Statistical and Shape-Based Approaches for Non-rigid Motion Tracking with Missing Data Using a Particle Filter

نویسندگان

  • Abir El Abed
  • Séverine Dubuisson
  • Dominique Béréziat
چکیده

Recent developments in dynamic contour tracking in video sequences are based on prediction using dynamical models. The parameters of these models are fixed by learning the dynamics from a training set to represent plausible motions, such as constant velocity or critically damped oscillations. Thus, a problem arise in cases of non-constant velocity and unknown interframe motion, i.e. unlearned motions, and the CONDENSATION algorithm fails to track the dynamic contour. The main contribution of this work is to propose an adaptative dynamical model which parameters are based on non-linear/non-gaussian observation models. We study two different approaches, one statistical and one shape-based, to estimate the deformation of an object and track complex dynamics without learning from a training set neather the dynamical nor the deformation models and under the constraints of missing data, non-linear deformation and unknown interframe motion. The developed approaches have been successfully tested on several sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying mean shift and motion detection approaches to hand tracking in sign language

Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...

متن کامل

Tracking and Shape Control of a Micro-cantilever using Electrostatic Actuation

In this paper the problems of state estimation, tracking control and shape control in a micro-cantilever beam with nonlinear electrostatic actuation are investigated. The system’s partial differential equation of motion is converted into a set of ordinary differential equations by projection method. Observabillity of the system is proven and a state estimation system is designed using extended ...

متن کامل

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

Learning Non-Rigid 3D Shape from 2D Motion

This paper presents an algorithm for learning the time-varying shape of a non-rigid 3D object from uncalibrated 2D tracking data. We model shape motion as a rigid component (rotation and translation) combined with a non-rigid deformation. Reconstruction is ill-posed if arbitrary deformations are allowed. We constrain the problem by assuming that the object shape at each time instant is drawn fr...

متن کامل

A Cascading Framework of Contour Motion and Deformation Estimation for Non-Rigid Object Tracking

This paper mainly focuses on applications for non-rigid contour tracking in heavily cluttered background scenes. Based on the properties of non-rigid contour movements, a cascading framework for estimating contour motion and deformation is proposed. We solve the non-rigid contour tracking problem by decomposing it into three sub problems: motion estimation, deformation estimation, and shape reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006