The Invariant Representations of a Quadric Cone and a Twisted Cubic
نویسندگان
چکیده
Up to now, the shortest invariant representation of a quadric has 138 summands and there has been no invariant representation of a twisted cubic in 3D projective space, which limit to some extent the applications of invariants in 3D space. In this paper, we give a very short invariant representation of a quadric cone, a special quadric, which has only two summands similar to the invariant representation of a planar conic, and give a short invariant representation of a twisted cubic. Then, a completely linear algorithm for generating the parametric equations of a twisted cubic is provided also. Finally, we exemplify some applications of our proposed invariant representations in the fields of computer vision and automated geometric theorem proving.
منابع مشابه
Applications of line geometry, III: The quadric Veronesean and the chords of a twisted cubic
The chords of a twisted cubic in PG(3, q) are mapped via their Plucker coordinates to the points of a Veronese surface lying on the Klein quadric in PG(5, q). This correspondence over a finite field gives a cap in PG(5, q), that is, a set of points no three of which are collinear. The dual structure, namely the axes of the osculating developable, is also mapped to a Veronese surface. The two su...
متن کاملCoupled coincidence point theorems for maps under a new invariant set in ordered cone metric spaces
In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces. Some examples are provided to verify the effectiveness and applicability of our results.
متن کاملNumerical Solutions of Kähler–Einstein Metrics on P2 with Conical Singularities along a Smooth Quadric Curve
We solve for the SO(3)-invariant Kähler–Einstein metric on P2 with cone singularities along a smooth quadric curve using a numerical approach. The numerical results show the sharp range of angles ((π/2, 2π ]) for the solvability of equations, and the correct limit metric space (P(1, 1, 4)). These results exactly match our theoretical conclusion. We also point out the cause of incomplete classif...
متن کاملThe Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7
Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...
متن کاملTwisted Cubics on Cubic Fourfolds
We construct a new twenty-dimensional family of projective eight-dimensional holomorphically symplectic manifolds: the compactified moduli space M3(Y ) of twisted cubics on a smooth cubic fourfold Y that does not contain a plane is shown to be smooth and to admit a contraction M3(Y ) → Z(Y ) to a projective eight-dimensional symplectic manifold Z(Y ). The construction is based on results on lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 25 شماره
صفحات -
تاریخ انتشار 2003