Informed Source Separation Using Latent Components
نویسندگان
چکیده
We address the issue of source separation in a particular informed configuration where both the sources and the mixtures are assumed to be known during a so-called encoding stage. This knowledge enables the computation of a side information which ought to be small enough to be watermarked in the mixtures. At the decoding stage, the sources are no longer assumed to be known, only the mixtures and the side information are processed to perform source separation. The proposed method models the sources jointly using latent variables in a framework close to multichannel nonnegative matrix factorization and models the mixing process as linear filtering. Separation at the decoding stage is done using generalized Wiener filtering of the mixtures. An experimental setup shows that the method gives very satisfying results with mixtures composed of many sources. A study of its performance with respect to the number of latent variables is presented.
منابع مشابه
Evaluation of a Score-informed Source Separation System
In this work, we investigate a method for score-informed source separation using Probabilistic Latent Component Analysis (PLCA). We present extensive test results that give an indication of the performance of the method, its strengths and weaknesses. For this purpose, we created a test database that has been made available to the public, in order to encourage comparisons with alternative methods.
متن کاملSeparation of instantaneous mixtures of a particular set of dependent sources using classical ICA methods
This article deals with the problem of blind source separation in the case of a linear and instantaneous mixture. We first investigate the behavior of known independent component analysis (ICA) methods in the case where the independence assumption is violated: specific dependent sources are introduced and it is shown that, depending on the source vector, the separation may be successful or not....
متن کاملBeta Process Sparse Nonnegative Matrix Factorization for Music
Nonnegative matrix factorization (NMF) has been widely used for discovering physically meaningful latent components in audio signals to facilitate source separation. Most of the existing NMF algorithms require that the number of latent components is provided a priori, which is not always possible. In this paper, we leverage developments from the Bayesian nonparametrics and compressive sensing l...
متن کاملProbabilistic Latent Component Analysis for Gearbox Vibration Source Separation
Probabilistic latent component analysis (PLCA) is applied to the problem of gearbox vibration source separation. A model for the probability distribution of gearbox vibration employs a latent variable intended to correspond to a particular vibration source, with the measured vibration at a particular sensor for each source the product of a marginal distribution of vibration by frequency, a marg...
متن کاملFuzzy Local ICA for Extracting Independent Components Related to External Criteria
Independent component analysis (ICA) is an unsupervised technique for blind source separation, and the ICA algorithms using nongaussianity as the measure of mutual independence have been also used for projection pursuit or visualization of multivariate data for knowledge discovery in databases (KDD). However, in real applications, it is often the case that we fail to extract useful latent varia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010