A critical-layer framework for turbulent pipe flow
نویسندگان
چکیده
A model-based description of the scaling and radial location of turbulent fluctuations in turbulent pipe flow is presented and used to illuminate the scaling behaviour of the very large scale motions. The model is derived by treating the nonlinearity in the perturbation equation (involving the Reynolds stress) as an unknown forcing, yielding a linear relationship between the velocity field response and this nonlinearity. We do not assume small perturbations. We examine propagating helical velocity response modes that are harmonic in the wall-parallel directions and in time, permitting comparison of our results to experimental data. The steady component of the velocity field that varies only in the wall-normal direction is identified as the turbulent mean profile. A singular value decomposition of the resolvent identifies the forcing shape that will lead to the largest velocity response at a given wavenumber–frequency combination. The hypothesis that these forcing shapes lead to response modes that will be dominant in turbulent pipe flow is tested by using physical arguments to constrain the range of wavenumbers and frequencies to those actually observed in experiments. An investigation of the most amplified velocity response at a given wavenumber–frequency combination reveals critical-layer-like behaviour reminiscent of the neutrally stable solutions of the Orr–Sommerfeld equation in linearly unstable flow. Two distinct regions in the flow where the influence of viscosity becomes important can be identified, namely wall layers that scale with R and critical layers where the propagation velocity is equal to the local mean velocity, one of which scales with R in pipe flow. This framework appears to be consistent with several scaling results in wall turbulence and reveals a mechanism by which the effects of viscosity can extend well beyond the immediate vicinity of the wall. The model reproduces inner scaling of the small scales near the wall and an approach to outer scaling in the flow interior. We use our analysis to make a first prediction that the appropriate scaling velocity for the very large scale motions is the centreline velocity, and show that this is in agreement with experimental results. Lastly, we interpret the wall modes as the motion required to meet the wall boundary condition, identifying the interaction between the critical and wall modes as a potential origin for an interaction between the large and small scales that has been observed in recent literature as an amplitude modulation of the near-wall turbulence by the very large scales.
منابع مشابه
Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملNumerical Study of Single Phase/Two-Phase Models for Nanofluid Forced Convection and Pressure Drop in a Turbulence Pipe Flow
In this paper, the problem of turbulent forced convection flow of water- alumina nanofluid in a uniformly heated pipe has been thoroughly investigated. In numerical study, single and two-phase models have been used. In single-phase modeling of nanofluid, thermal and flow properties of nanofluid have been considered to be dependent on temperature and volume fraction. Effects of volume fraction a...
متن کاملThe Experimental Study of Nanoparticles Effect on Thermal Efficiency of Double Pipe Heat Exchangers in Turbulent Flow
In this work, the characteristics of flow and heat transfer of a fluid containing nano particles of aluminum oxide with the water volume fraction (0.1-0.2-0.3)(V/V) percent of the reports. The overall heat transfer coefficient, heat transfer and the average heat transfer fluid containing nano water - aluminum oxide in a horizontal double pipe counter flow heat exchanger under turbulent flow con...
متن کاملEmergence of the four layer dynamical regime in turbulent pipe flow
Direct numerical simulations of fully developed turbulent pipe flow that span the Reynolds number range 90 ! δ+ ! 1000 are used to investigate the evolution of the mean momentum field in and beyond the transitional regime. It is estimated that the four layer regime for pipe flow is nominally established for δ+ ≥ 180, which is also close to the value found for channel flow. Primary attention is ...
متن کاملA New Model for Prediction of Heat Eddy Diffusivity in Pipe Expansion Turbulent Flows
A new model to calculate heat eddy diffusivity in separating and reattaching flows based on modification of constant Prt is proposed. This modification is made using an empirical correlation between maximum Nusselt number and entrance Reynolds number. The model includes both the simplicity of Prt=0.9 assumption and the accuracy of two-equation heat-transfer models. Furthermore, an appropriate l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010