Spatial-Angular Sparse Coding for HARDI
نویسندگان
چکیده
High angular resolution diffusion imaging (HARDI) can produce better estimates of fiber orientation and richer sets of features for disease classification than diffusion tensor imaging. However, existing HARDI reconstruction algorithms require a large number of gradient directions, making the acquisition time too long to be clinically viable. State-of-the-art compressed sensing methods can reduce the number of measurements needed for accurate reconstruction by exploiting angular sparsity at each voxel, but the global sparsity level is therefore bounded below by the number of voxels. In this work, we aim to find a significantly sparser representation of HARDI by exploiting redundancies in both the spatial and angular domains jointly with a global HARDI basis. However, this leads to a massive global optimization problem over the whole brain which cannot be solved using existing sparse coding methods. We present a novel Kronecker extension to ADMM that exploits the separable spatial-angular structure of HARDI data to efficiently find a globally sparse reconstruction. We validate our method on phantom and real HARDI brain data by showing that we can achieve accurate reconstructions with a global sparsity level corresponding to less then one atom per voxel, surpassing the absolute limit of the state-of-the-art.
منابع مشابه
Efficient Global Spatial-Angular Sparse Coding for Diffusion MRI with Separable Dictionaries
Diffusion MRI (dMRI) provides the ability to reconstruct neuronal fibers in the brain, in vivo, by measuring water diffusion along angular gradient directions in q-space. High angular resolution diffusion imaging (HARDI) can produce better estimates of fiber orientation than the popularly used diffusion tensor imaging, but the high number of samples needed to estimate diffusivity requires lengt...
متن کامل($k, q$)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior
Advanced diffusion magnetic resonance imaging (dMRI) techniques, like diffusion spectrum imaging (DSI) and high angular resolution diffusion imaging (HARDI), remain underutilized compared to diffusion tensor imaging because the scan times needed to produce accurate estimations of fiber orientation are significantly longer. To accelerate DSI and HARDI, recent methods from compressed sensing (CS)...
متن کاملProbabilistic ODF Estimation from Reduced HARDI Data with Sparse Regularization
High Angular Resolution Diffusion Imaging (HARDI) demands a higher amount of data measurements compared to Diffusion Tensor Imaging (DTI), restricting its use in practice. We propose to represent the probabilistic Orientation Distribution Function (ODF) in the frame of Spherical Wavelets (SW), where it is highly sparse. From a reduced subset of measurements (nearly four times less than the stan...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملOn facilitating the use of HARDI in population studies by creating rotation-invariant markers
We design and evaluate a novel method to compute rotationally invariant features using High Angular Resolution Diffusion Imaging (HARDI) data. These measures quantify the complexity of the angular diffusion profile modeled using a higher order model, thereby giving more information than classical diffusion tensor-derived parameters. The method is based on the spherical harmonic (SH) representat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016