A role for a novel centrosome cycle in asymmetric cell division
نویسندگان
چکیده
Tissue stem cells play a key role in tissue maintenance. Drosophila melanogaster central brain neuroblasts are excellent models for stem cell asymmetric division. Earlier work showed that their mitotic spindle orientation is established before spindle formation. We investigated the mechanism by which this occurs, revealing a novel centrosome cycle. In interphase, the two centrioles separate, but only one is active, retaining pericentriolar material and forming a "dominant centrosome." This centrosome acts as a microtubule organizing center (MTOC) and remains stationary, forming one pole of the future spindle. The second centriole is inactive and moves to the opposite side of the cell before being activated as a centrosome/MTOC. This is accompanied by asymmetric localization of Polo kinase, a key centrosome regulator. Disruption of centrosomes disrupts the high fidelity of asymmetric division. We propose a two-step mechanism to ensure faithful spindle positioning: the novel centrosome cycle produces a single interphase MTOC, coarsely aligning the spindle, and spindle-cortex interactions refine this alignment.
منابع مشابه
Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells
Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem ce...
متن کاملThe polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline
Many stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lea...
متن کاملDev117044 1..8
Asymmetric cell division is utilized by a broad range of cell types to generate two daughter cells with distinct cell fates. In stem cell populations asymmetric cell division is believed to be crucial for maintaining tissue homeostasis, failure of which can lead to tissue degeneration or hyperplasia/tumorigenesis. Asymmetric cell divisions also underlie cell fate diversification during developm...
متن کاملDev117044 62..69
Asymmetric cell division is utilized by a broad range of cell types to generate two daughter cells with distinct cell fates. In stem cell populations asymmetric cell division is believed to be crucial for maintaining tissue homeostasis, failure of which can lead to tissue degeneration or hyperplasia/tumorigenesis. Asymmetric cell divisions also underlie cell fate diversification during developm...
متن کاملCentrosome-Associated Degradation Limits β-Catenin Inheritance by Daughter Cells after Asymmetric Division
Caenorhabditis elegans embryos rapidly diversify cell fate using a modified Wnt/β-catenin signaling strategy to carry out serial asymmetric cell divisions (ACDs). Wnt-dependent ACDs rely on nuclear asymmetry of the transcriptional coactivator SYS-1/β-catenin between daughter cells to differentially activate Wnt-responsive target genes. Here, we investigate how dynamic localization of SYS-1 to m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 177 شماره
صفحات -
تاریخ انتشار 2007