Dynamic phases of active matter systems with quenched disorder.
نویسندگان
چکیده
Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions with the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.
منابع مشابه
Dynamic phases, clustering, and chain formation for driven disk systems in the presence of quenched disorder.
We numerically examine the dynamic phases and pattern formation of two-dimensional monodisperse repulsive disks driven over random quenched disorder. We show that there is a series of distinct dynamic regimes as a function of increasing drive, including a clogged or pile-up phase near depinning, a homogeneous disordered flow state, and a dynamically phase separated regime consisting of high-den...
متن کاملDynamic Phases, Pinning, and Pattern Formation for Driven Dislocation Assemblies
We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as wel...
متن کاملInfinitely robust order and local order-parameter tulips in Apollonian networks with quenched disorder.
For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder. We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local mag...
متن کاملRare-region effects in the contact process on networks.
Networks and dynamical processes occurring on them have become a paradigmatic representation of complex systems. Studying the role of quenched disorder, both intrinsic to nodes and topological, is a key challenge. With this in mind, here we analyze the contact process (i.e., the simplest model for propagation phenomena) with node-dependent infection rates (i.e., intrinsic quenched disorder) on ...
متن کاملTemporal disorder in up-down symmetric systems.
The effect of temporal disorder on systems with up-down Z_{2} symmetry is studied. In particular, we analyze two well-known families of phase transitions-the Ising and the generalized voter universality classes-and scrutinize the consequences of placing them under fluctuating global conditions. We observe that variability of the control parameter induces in both classes "temporal Griffiths phas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E
دوره 95 3-1 شماره
صفحات -
تاریخ انتشار 2017