Motor Neurones of the Crayfish Walking System Possess Tea+-revealed Regenerative Electrical Properties

نویسندگان

  • Cattaert
  • Araque
  • Buno
  • Clarac
چکیده

In crustaceans, some motor neurones (MNs) have been shown to be part of the central pattern generator in the stomatogastric system (Harris-Warrick et al. 1992; Moulins, 1990), the swimmeret system (Heitler, 1978) or the walking system (Chrachri and Clarac, 1990). These MNs induce changes in the central rhythm when depolarized and are conditional oscillators in the stomatogastric ganglion. Moreover, in the walking system, rhythmic activity can be triggered by muscarinic cholinergic agonists (Chrachri and Clarac, 1987). We have recently analyzed the role of muscarinic receptors in crayfish walking leg MNs (D. Cattaert and A. Araque, in preparation) and demonstrated that oxotremorine, a muscarinic agonist, evoked long-lasting depolarizing responses associated with an increased input resistance. The outward current blocked by oxotremorine is likely to be carried by K+, as is the case for the M current (IM) in vertebrates (Brown and Adams, 1980). In most neurones, K+ conductances play a principal role in maintaining the membrane potential at rest: for example, IM is active at the resting membrane potential, thus contributing to its maintenance, and the 'delayed-rectifier' (IK) assists the fast repolarization after an action potential. Some K+ conductances are Ca2+-dependent (IK,Ca) and are activated by an increase in internal Ca2+ concentration. In such cases, Ca2+ currents may result in hyperpolarization of the neurone through activation of IK,Ca. In opposition to these K+ currents, the direct effect of Na+ and Ca2+ conductances is to depolarize the neurone. For example, the persistant Na+ current (INap) that is responsible for the slow subthreshold depolarization termed slow pre-potentials (Gestrelius et al. 1983; Leung and Yim, 1991) participates in the formation of pacemaker depolarization (Barrio et al. 1991) and generates plateau-type responses in control conditions (Barrio et al. 1991; Llinas and Sugimori, 1980). Similarly Ca2+ or non-specific (Na+/Ca2+) conductances generate such events in Aplysia californica burster neurones (Adams and Benson, 1985), crustacean cardiac ganglion (Tazaki and Cooke, 1990), insect neurones (Hancox and Pitman, 1991) and crustacean stomatogastric ganglion (Kiehn and Harris-Warrick, 1992). Since crustacean MNs can participate in rhythm production, such depolarizing conductances may exist in most of them and may contribute to the long-lasting MN depolarizations and spike bursts present during locomotion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow Active Potentials in Walking-leg Motor Neurones Triggered by Non-spiking Proprioceptive Afferents in the Crayfish

Intracellular recordings have been made from walking-leg motor neurones of the crayfish, Pacifastacus leniusculus, in isolated preparations of the thoracic ganglia. Some motor neurones display slow depolarizations that can drive bursts of spikes and resemble 'plateau' potentials described in other invertebrate and vertebrate neurones. Evidence is presented which suggests that the potentials are...

متن کامل

Neuronal mechanisms underlying the facilitatory control of uropod steering behaviour during treadmill walking in crayfish. I. Antagonistically regulated background excitability of uropod motoneurones

One of the postural reflexes of crayfish, the uropod steering response, is elicited by specific sensory inputs while the animal is walking. It is not elicited, however, by the same inputs when the animal is at rest. To clarify the neuronal mechanisms underlying this facilitatory control of body posture in the active animals, we used intracellular recordings to analyse the synaptic activities of...

متن کامل

Proprioceptive motor control in fish respiration.

The response of single respiratory neurones in the medulla oblongata of carp to short twitches of individual respiratory muscles were analysed. The muscle contractions were obtained through automatic electrical stimulation and could be consistently elicited in a predetermined phase relation to the ventilatory cycle. The results show that, apart from nerve cells which take part in long-term proc...

متن کامل

Control of a central pattern generator by an identified modulatory interneurone in crustacea. II. Induction and modification of plateau properties in pyloric neurones.

In the isolated stomatogastric nervous system of the lobster Fasus lalandii, the strong modifications of the pyloric motor pattern induced by firing of the single anterior pyloric modulator neurone (APM) are due primarily to modulation by APM activity of the regenerative membrane properties which are responsible for the 'burstiness' of all the pyloric neurones and particularly of the non-pacema...

متن کامل

Functional Principles of Pattern Generation for Walking Movements of Stick Insect Forelegs: the Role of the Femoral Chordotonal Organ Afferences

A rampwise stretch of the femoral chordotonal organ is known often to elicit a response in the active decerebrate stick insect that is termed an 'active reaction', and which can be considered to represent part of the step cycle. During the first part of the response, the flexor motor neurones are excited and the excitatory extensor motor neurones are inhibited, forming a positive feedback loop....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 188 1  شماره 

صفحات  -

تاریخ انتشار 1994