Backward Stochastic Navier - Stokes Equations in Two Dimensions

نویسندگان

  • George Cochran
  • Charles Delzell
  • Jimmie Lawson
  • Ambar Sengupta
چکیده

There are two parts in this dissertation. The backward stochastic Lorenz system is studied in the first part. Suitable a priori estimates for adapted solutions of the backward stochastic Lorenz system are obtained. The existence and uniqueness of solutions is shown by the use of suitable truncations and approximations. The continuity of the adapted solutions with respect to the terminal data is also established. The backward two-dimensional stochastic Navier-Stokes equations (BSNSEs, for short) corresponding to incompressible fluid flow in a bounded domain G are studied in the second part. Suitable a priori estimates for adapted solutions of the BSNSEs are obtained which reveal a surprising pathwise L∞(H) bound on the solutions. The existence of solutions is shown by using a monotonicity argument. Uniqueness is proved by using a novel method that uses finite-dimensional projections, linearization, and truncations. The continuity of the adapted solutions with respect to the terminal data and the external body force is also established.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stochastic Representation for Backward Incompressible Navier-stokes Equations

By reversing the time variable we derive a stochastic representation for backward incompressible Navier-Stokes equations in terms of stochastic Lagrangian paths, which is similar to Constantin and Iyer’s forward formulations in [6]. Using this representation, a self-contained proof of local existence of solutions in Sobolev spaces are provided for incompressible Navier-Stokes equations in the w...

متن کامل

The Navier–Stokes equations and forward-backward SDEs on the group of volume-preserving diffeomorphisms of a flat torus

We establish a connection between the strong solution to the spatially periodic Navier–Stokes equations and a solution to a system of forward-backward stochastic differential equations (FBSDEs) on the group of volume-preserving diffeomorphisms of a flat torus. We construct a representation of the strong solution to the Navier–Stokes equations in terms of diffusion processes.

متن کامل

Backward uniqueness of stochastic parabolic like equations driven by Gaussian multiplicative noise

One proves here the backward uniqueness of solutions to stochastic semilinear parabolic equations and also for the tamed Navier–Stokes equations driven by linearly multiplicative Gaussian noises. Applications to approximate controllability of nonlinear stochastic parabolic equations with initial controllers are given. The method of proof relies on the logarithmic convexity property known to hol...

متن کامل

Navier–Stokes equations and forward-backward SDEs on the group of diffeomorphisms of a torus

We establish a connection between the strong solution to the spatially periodic Navier–Stokes equations and a solution to a system of forward-backward stochastic differential equations (FBSDEs) on the group of volume-preserving diffeomorphisms of a flat torus. We construct representations of the strong solution to the Navier–Stokes equations in terms of diffusion processes.

متن کامل

Stochastic Navier-Stokes Equations with Artificial Compressibility in Random Durations

The existence and uniqueness of adapted solutions to the backward stochastic Navier-Stokes equationwith artificial compressibility in two-dimensional bounded domains are shown byMintyBrowder monotonicity argument, finite-dimensional projections, and truncations. Continuity of the solutions with respect to terminal conditions is given, and the convergence of the system to an incompressible flow ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007