Backward Stochastic Navier - Stokes Equations in Two Dimensions
نویسندگان
چکیده
There are two parts in this dissertation. The backward stochastic Lorenz system is studied in the first part. Suitable a priori estimates for adapted solutions of the backward stochastic Lorenz system are obtained. The existence and uniqueness of solutions is shown by the use of suitable truncations and approximations. The continuity of the adapted solutions with respect to the terminal data is also established. The backward two-dimensional stochastic Navier-Stokes equations (BSNSEs, for short) corresponding to incompressible fluid flow in a bounded domain G are studied in the second part. Suitable a priori estimates for adapted solutions of the BSNSEs are obtained which reveal a surprising pathwise L∞(H) bound on the solutions. The existence of solutions is shown by using a monotonicity argument. Uniqueness is proved by using a novel method that uses finite-dimensional projections, linearization, and truncations. The continuity of the adapted solutions with respect to the terminal data and the external body force is also established.
منابع مشابه
A Stochastic Representation for Backward Incompressible Navier-stokes Equations
By reversing the time variable we derive a stochastic representation for backward incompressible Navier-Stokes equations in terms of stochastic Lagrangian paths, which is similar to Constantin and Iyer’s forward formulations in [6]. Using this representation, a self-contained proof of local existence of solutions in Sobolev spaces are provided for incompressible Navier-Stokes equations in the w...
متن کاملThe Navier–Stokes equations and forward-backward SDEs on the group of volume-preserving diffeomorphisms of a flat torus
We establish a connection between the strong solution to the spatially periodic Navier–Stokes equations and a solution to a system of forward-backward stochastic differential equations (FBSDEs) on the group of volume-preserving diffeomorphisms of a flat torus. We construct a representation of the strong solution to the Navier–Stokes equations in terms of diffusion processes.
متن کاملBackward uniqueness of stochastic parabolic like equations driven by Gaussian multiplicative noise
One proves here the backward uniqueness of solutions to stochastic semilinear parabolic equations and also for the tamed Navier–Stokes equations driven by linearly multiplicative Gaussian noises. Applications to approximate controllability of nonlinear stochastic parabolic equations with initial controllers are given. The method of proof relies on the logarithmic convexity property known to hol...
متن کاملNavier–Stokes equations and forward-backward SDEs on the group of diffeomorphisms of a torus
We establish a connection between the strong solution to the spatially periodic Navier–Stokes equations and a solution to a system of forward-backward stochastic differential equations (FBSDEs) on the group of volume-preserving diffeomorphisms of a flat torus. We construct representations of the strong solution to the Navier–Stokes equations in terms of diffusion processes.
متن کاملStochastic Navier-Stokes Equations with Artificial Compressibility in Random Durations
The existence and uniqueness of adapted solutions to the backward stochastic Navier-Stokes equationwith artificial compressibility in two-dimensional bounded domains are shown byMintyBrowder monotonicity argument, finite-dimensional projections, and truncations. Continuity of the solutions with respect to terminal conditions is given, and the convergence of the system to an incompressible flow ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007