The Riemann Problem for the Shallow Water Equations with Discontinuous Topography
نویسنده
چکیده
We construct the solution of the Riemann problem for the shallow water equations with discontinuous topography. The system under consideration is non-strictly hyperbolic and does not admit a fully conservative form, and we establish the existence of two-parameter wave sets, rather than wave curves. The selection of admissible waves is particularly challenging. Our construction is fully explicit, and leads to formulas that can be implemented numerically for the approximation of the general initial-value problem.
منابع مشابه
Convergence to Equilibrium Rarefaction Waves for Discontinuous Solutions of Shallow Water Wave Equations with Relaxation
The purpose of this paper is to study the discontinuous solutions to a shallow water wave equation with relaxation. The typical initial value problem of discontinuous solutions is the Riemann problem. Unlike the homogeneous hyperbolic conservation laws, due to the inhomogeneity of the system studied here, the solutions of the Riemann problem do not have a self-similar structure anymore. This pr...
متن کاملEntropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography
We describe a shock-capturing streamline diffusion space-time discontinuous Galerkin (DG) method to discretize the shallow water equations with variable bottom topography. This method, based on the entropy variables as degrees of freedom, is shown to be energy stable as well as well-balanced with respect to the lake at rest steady state. We present numerical experiments illustrating the numeric...
متن کاملDiscontinuous Galerkin Method for 1D Shallow Water Flow with Water Surface Slope Limiter
A water surface slope limiting scheme is tested and compared with the water depth slope limiter for the solution of one dimensional shallow water equations with bottom slope source term. Numerical schemes based on the total variation diminishing RungeKutta discontinuous Galerkin finite element method with slope limiter schemes based on water surface slope and water depth are used to solve one-d...
متن کاملAugmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation
We present a class of augmented approximate Riemann solvers for the shallow water equations in the presence of a variable bottom surface. These belong to the class of simple approximate solvers that use a set of propagating jump discontinuities, or waves, to approximate the true Riemann solution. Typically, a simple solver for a system of m conservation laws uses m such discontinuities. We pres...
متن کاملExact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry
In this paper we present the exact solution of the Riemann Problem for the non-linear shallow water equations with a step-like bottom. The solution has been obtained by solving an enlarged system obtained by adding an additional equation for the bottom geometry and then using the principles of conservation of mass and momentum across the step. The resulting solution is unique and satis es the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007