Test planning for low-power built-in self test

نویسنده

  • Christian G. Zöllin
چکیده

Power consumption has become the most important issue in the design of integrated circuits. The power consumption during manufacturing or in-system test of a circuit can significantly exceed the power consumption during functional operation. The excessive power can lead to false test fails or can result in the permanent degradation or destruction of the device under test. Both effects can significantly impact the cost of manufacturing integrated circuits. This work targets power consumption during Built-In Self-Test (BIST). BIST is a Design-for-Test (DfT) technique that adds additional circuitry to a design such that it can be tested at-speed with very little external stimulus. Test planning is the process of computing configurations of the BIST-based tests that optimize the power consumption within the constraints of test time and fault coverage. In this work, a test planning approach is presented that targets the Self-Test Using Multiple-input signature register and Parallel Shift-register sequence generator (STUMPS) DfT architecture. For this purpose, the STUMPS architecture is extended by clock gating in order to leverage the benefits of test planning. The clock of every chain of scan flip-flops can be independently disabled, reducing the switching activity of the flip-flops and their clock distribution to zero as well as reducing the switching activity of the down-stream logic. Further improvements are obtained by clustering the flip-flops of the circuit appropriately. The test planning problem is mapped to a set covering problem. The constraints for the set covering are extracted from fault simulation and the circuit structure such that any valid cover will test every targeted fault at least once. Divide-and-conquer is employed to reduce the computational complexity of optimization against a power consumption metric. The approach can be combined with any fault model and in this work, stuck-at and transition faults are considered. The approach effectively reduces the test power without increasing the test time or reducing the fault coverage. It has proven effective with academic benchmark circuits, several industrial benchmarks and the Synergistic Processing Element (SPE) of the Cell/B.E.TM Processor (Riley et al., 2005). Hardware experiments have been

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Power March Memory Test Algorithm for Static Random Access Memories (TECHNICAL NOTE)

Memories are most important building blocks in many digital systems. As the Integrated Circuits requirements are growing, the test circuitry must grow as well. There is a need for more efficient test techniques with low power and high speed. Many Memory Built in Self-Test techniques have been proposed to test memories. Compared with combinational and sequential circuits memory testing utilizes ...

متن کامل

Look up Table Based Low Power Analog Circuit Testing

In this paper, a method of low power analog testing is proposed. In spite of having Oscillation Based Built in Self-Test methodology (OBIST), a look up table based (LUT) low power testing approach has been proposed to find out the faulty circuit and also to sort out the particular fault location in the circuit. In this paper an operational amplifier, which is the basic building block in the ana...

متن کامل

Embedded Memory Test Strategies and Repair

The demand of self-testing proportionally increases with memory size in System on Chip (SoC). SoC architecture normally occupies the majority of its area by memories. Due to increase in density of embedded memories, there is a need of self-testing mechanism in SoC design. Therefore, this research study focuses on this problem and introduces a smooth solution for self-testing.  In the proposed m...

متن کامل

Implementation of Low Transition Lfsr Test Pattern for Logic Bist

A Low Transition LFSR(LT-LFSR) designed by modifying Linear Feedback Shift Register is proposed to produce low power test vectors which are given to Circuit under Test (CUT) to reduce the power consumption by CUT. This technique of generating low power test patterns is performed by increasing the co-relativity between the consecutive vectors by reducing the number of bit flips between successiv...

متن کامل

Test Pattern Generator ( TPG ) for Low Power Logic Built In Self Test ( BIST ) Sabir Hussain

This research article proposed a logic BIST using linear feedback shift register (LFSR) to generate low power test patterns; It reduced the number of transitions at the input of the circuit-under-test using bit swapping technique. The designed architecture is programmed using Verilog HDL and simulated using CADENCE EDA Tool of 180 nm technology and also proposed design gives better performance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015