Functional Glycosylation of Dystroglycan Is Crucial for Thymocyte Development in the Mouse
نویسندگان
چکیده
BACKGROUND Alpha-dystroglycan (alpha-DG) is a cell surface receptor providing a molecular link between the extracellular matrix (ECM) and the actin-based cytoskeleton. During its biosynthesis, alpha-DG undergoes specific and unusual O-glycosylation crucial for its function as a high-affinity cellular receptor for ECM proteins. METHODOLOGY/PRINCIPAL FINDINGS We report that expression of functionally glycosylated alpha-DG during thymic development is tightly regulated in developing T cells and largely confined to CD4(-)CD8(-) double negative (DN) thymocytes. Ablation of DG in T cells had no effect on proliferation, migration or effector function but did reduce the size of the thymus due to a significant loss in absolute numbers of thymocytes. While numbers of DN thymocytes appeared normal, a marked reduction in CD4(+)CD8(+) double positive (DP) thymocytes occurred. In the periphery mature naïve T cells deficient in DG showed both normal proliferation in response to allogeneic cells and normal migration, effector and memory T cell function when tested in acute infection of mice with either lymphocytic choriomeningitis virus (LCMV) or influenza virus. CONCLUSIONS/SIGNIFICANCE Our study demonstrates that DG function is modulated by glycosylation during T cell development in vivo and that DG is essential for normal development and differentiation of T cells.
منابع مشابه
Development of Rabbit Monoclonal Antibodies for Detection of Alpha-Dystroglycan in Normal and Dystrophic Tissue
Alpha-dystroglycan requires a rare O-mannose glycan modification to form its binding epitope for extracellular matrix proteins such as laminin. This functional glycan is disrupted in a cohort of muscular dystrophies, the secondary dystroglycanopathies, and is abnormal in some metastatic cancers. The most commonly used reagent for detection of alpha-dystroglycan is mouse monoclonal antibody IIH6...
متن کاملDystroglycan: from biosynthesis to pathogenesis of human disease.
Alpha- and beta-dystroglycan constitute a membrane-spanning complex that connects the extracellular matrix to the cytoskeleton. Although a structural role for dystroglycan had been identified, biochemical and genetic discoveries have recently highlighted the significance of posttranslational processing for dystroglycan function. Glycosylation is the crucial modification that modulates the funct...
متن کاملResidual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy
Hypoglycosylation and reduced laminin-binding activity of alpha-dystroglycan are common characteristics of dystroglycanopathy, which is a group of congenital and limb-girdle muscular dystrophies. Fukuyama-type congenital muscular dystrophy (FCMD), caused by a mutation in the fukutin gene, is a severe form of dystroglycanopathy. A retrotransposal insertion in fukutin is seen in almost all cases ...
متن کاملDisruption of perlecan binding and matrix assembly by post-translational or genetic disruption of dystroglycan function.
Dystroglycan is a cell-surface matrix receptor that requires LARGE-dependent glycosylation for laminin binding. Although the interaction of dystroglycan with laminin has been well characterized, less is known about the role of dystroglycan glycosylation in the binding and assembly of perlecan. We report reduced perlecan-binding activity and mislocalization of perlecan in the LARGE-deficient Lar...
متن کاملDystroglycan matrix receptor function in cardiac myocytes is important for limiting activity-induced myocardial damage.
RATIONALE Genetic mutations in a number of putative glycosyltransferases lead to the loss of glycosylation of dystroglycan and loss of its laminin-binding activity in genetic forms of human muscular dystrophy. Human patients and glycosylation defective myd mice develop cardiomyopathy with loss of dystroglycan matrix receptor function in both striated and smooth muscle. OBJECTIVE To determine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010