A Structure Theorem of Dirac-harmonic Maps between Spheres
نویسنده
چکیده
For an arbitrary Dirac-harmonic map (φ, ψ) between compact oriented Riemannian surfaces, we shall study the zeros of |ψ|. With the aid of Bochner-type formulas, we explore the relationship between the order of the zeros of |ψ| and the genus of M and N . On the basis, we could clarify all of nontrivial Dirac-harmonic maps from S to S.
منابع مشابه
Regularity of Dirac-harmonic maps
For any n-dimensional compact spin Riemannian manifold M with a given spin structure and a spinor bundle ΣM , and any compact Riemannian manifold N , we show an ǫ-regularity theorem for weakly Dirac-harmonic maps (φ, ψ) : M ⊗ΣM → N ⊗ φ∗TN . As a consequence, any weakly Dirac-harmonic map is proven to be smooth when n = 2. A weak convergence theorem for approximate Dirac-harmonic maps is establi...
متن کاملEnergy Quantization for Harmonic Maps
In this paper we establish the higher-dimensional energy bubbling results for harmonic maps to spheres. We have shown in particular that the energy density of concentrations has to be the sum of energies of harmonic maps from the standard 2dimensional spheres. The result also applies to the structure of tangent maps of stationary harmonic maps at either a singularity or infinity. 0. Introductio...
متن کاملN ov 2 00 4 February 1 , 2008 DIRAC - HARMONIC MAPS
We introduce a functional that couples the nonlinear sigma model with a spinor field: L = ∫ M [|dφ|2 + (ψ,D/ψ)]. In two dimensions, it is conformally invariant. The critical points of this functional are called Dirac-harmonic maps. We study some geometric and analytic aspects of such maps, in particular a removable singularity theorem.
متن کاملOn the Space of Metrics with Invertible Dirac Operator
On a compact spin manifold we study the space of Riemannian metrics for which the Dirac operator is invertible. The first main result is a surgery theorem stating that such a metric can be extended over the trace of a surgery of codimension at least three. We then prove that if non-empty the space of metrics with invertible Dirac operators is disconnected in dimensions n ≡ 0, 1, 3, 7 mod 8, n ≥...
متن کاملDirac-harmonic maps from index theory
We prove existence results for Dirac-harmonic maps using index theoretical tools. They are mainly interesting if the source manifold has dimension 1 or 2 modulo 8. Our solutions are uncoupled in the sense that the underlying map between the source and target manifolds
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008