A Comparative Study on Strategies of Rule Induction for Incomplete Data Based on Rough Set Approach
نویسندگان
چکیده
Rough set based rule induction approaches have been studied intensively during past few years. However, classical rough set model cannot deal with incomplete data sets. There are two main categories dealing with this problem: the preprocessing methods and the extensions of rough set model. This paper focuses on the comparison of three strategies for dealing with incomplete data containing three preprocessing methods and one extended discernibility matrix method. These three methods only different when building the discernibility matrix, and they have the same rule induction method. The result shows that some preprocessing methods are stable and relatively effective, while the extended discernibility matrix method is not very effective in dealing with incomplete data.
منابع مشابه
A Comparative Study on Decision Rule Induction for incomplete data using Rough Set and Random Tree Approaches
Handling missing attribute values is the greatest challenging process in data analysis. There are so many approaches that can be adopted to handle the missing attributes. In this paper, a comparative analysis is made of an incomplete dataset for future prediction using rough set approach and random tree generation in data mining. The result of simple classification technique (using random tree ...
متن کاملInvestigating the missing data effect on credit scoring rule based models: The case of an Iranian bank
Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...
متن کاملA comparison of traditional and rough set approaches to missing attribute values in data mining
Real-life data sets are often incomplete, i.e., some attribute values are missing. In this paper we compare traditional, frequently used methods of handling missing attribute values, which are based on preprocessing, with another class of methods dealing with missing attribute values in which rule induction is performed directly on incomplete data sets, i.e., handling missing attribute values a...
متن کاملA comparative study on rough set based class imbalance learning
This paper performs systematic comparative studies on rough set based class imbalance learning. We compare the strategies of weighting, re-sampling and filtering used in the rough set based methods for class imbalance learning. Weighting is better than re-sampling, and re-sampling is better than filtering. The weighted rough set based method achieves the best performance in class imbalance lear...
متن کاملApplication of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)
Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011