Extended Formulations in Mixed-Integer Convex Programming
نویسندگان
چکیده
We present a unifying framework for generating extended formulations for the polyhedral outer approximations used in algorithms for mixed-integer convex programming (MICP). Extended formulations lead to fewer iterations of outer approximation algorithms and generally faster solution times. First, we observe that all MICP instances from the MINLPLIB2 benchmark library are conic representable with standard symmetric and nonsymmetric cones. Conic reformulations are shown to be effective extended formulations themselves because they encode separability structure. For mixed-integer conic-representable problems, we provide the first outer approximation algorithm with finite-time convergence guarantees, opening a path for the use of conic solvers for continuous relaxations. We then connect the popular modeling framework of disciplined convex programming (DCP) to the existence of extended formulations independent of conic representability. We present evidence that our approach can yield significant gains in practice, with the solution of a number of open instances from the MINLPLIB2 benchmark library.
منابع مشابه
Lifting Linear Extension Complexity Bounds to the Mixed-Integer Setting
Mixed-integer mathematical programs are among the most commonly used models for a wide set of problems in Operations Research and related fields. However, there is still very little known about what can be expressed by small mixed-integer programs. In particular, prior to this work, it was open whether some classical problems, like the minimum odd-cut problem, can be expressed by a compact mixe...
متن کاملTight formulations for some simple mixed integer programs and convex objective integer programs
We study the polyhedral structure of simple mixed integer sets that generalize the two variable set {(s, z) ∈ IR1+×Z 1 : s ≥ b−z}. These sets form basic building blocks that can be used to derive tight formulations for more complicated mixed integer programs. For four such sets we give a complete description by valid inequalities and/or an integral extended formulation, and we also indicate wha...
متن کاملDiscrete Lot–Sizing and Convex Integer Programming
We study the polyhedral structure of variants of the discrete lot–sizing problem viewed as special cases of convex integer programs. Our approach in studying convex integer programs is to develop results for simple mixed integer sets that can be used to model integer convex objective functions. These results allow us to define integral linear programming formulations for the discrete lot–sizing...
متن کاملSolving Single Machine Sequencing to Minimize Maximum Lateness Problem Using Mixed Integer Programming
Despite existing various integer programming for sequencing problems, there is not enoughinformation about practical values of the models. This paper considers the problem of minimizing maximumlateness with release dates and presents four different mixed integer programming (MIP) models to solve thisproblem. These models have been formulated for the classical single machine problem, namely sequ...
متن کاملErratum: Lot-Sizing with Stock Upper Bounds and Fixed Charges
Here we study the discrete lot-sizing problem with an initial stock variable and an associated variable upper bound constraint. This problem is of interest in its own right, and is also a natural relaxation of the constant capacity lot-sizing problem with upper bounds and fixed charges on the stock variables. We show that the convex hull of solutions of the discrete lot-sizing problem is obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016